Singularity functions for fractional processes: application to the fractional Brownian sheet

In this paper almost sure convergence and asymptotic normality of generalized quadratic variation are studied. The main result in this paper extend classical results from Baxter and Gladyshev so that they can be applied to fractional Gaussian processes. An application to the estimation of the true a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'I.H.P. Probabilités et statistiques 2006-01, Vol.42 (2), p.187-205
Hauptverfasser: Cohen, Serge, Guyon, Xavier, Perrin, Olivier, Pontier, Monique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue 2
container_start_page 187
container_title Annales de l'I.H.P. Probabilités et statistiques
container_volume 42
creator Cohen, Serge
Guyon, Xavier
Perrin, Olivier
Pontier, Monique
description In this paper almost sure convergence and asymptotic normality of generalized quadratic variation are studied. The main result in this paper extend classical results from Baxter and Gladyshev so that they can be applied to fractional Gaussian processes. An application to the estimation of the true axes of a fractional Brownian sheet is also obtained. On étudie dans ce papier les propriétés de convergence et de normalité asymptotique des variations quadratiques généralisées d'un champ brownien fractionnaire. Le résultat principal est une extension des résultats classiques de Baxter et Gladyshev au cas de processus gaussiens fractionnaires. Nous appliquons ce résultat à l'estimation de la direction privilégiée de tels processus.
doi_str_mv 10.1016/j.anihpb.2005.03.002
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00272022v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0246020305000580</els_id><sourcerecordid>oai_HAL_hal_00272022v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-a8fe2ee8c1377964396f6f6a4bb44a38ca7a85032d20dc3b3198f286c9741d93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxiyMDAknD8aJwxIpeJLqsRARyTr4jjUVYgjOy3qvychCJjQDdbZz3PWvYScU0go0PRqk2Bj122RMIBZAjwBYAdkQqXMYglUHpIJMJHGwIAfk5MQNgCQ5pBOyOuLbd62NXrb7aNq2-jOuiZElfNR5fGrwzpqvdMmBBOuI2zb2mocHqLORd3a_AVvvftoLDZRWBvTnZKjCutgzr7PKVnd360Wj_Hy-eFpMV_GmkvoYswqw4zJNOVS5qngeVr1haIohECeaZSYzYCzkkGpecFpnlUsS3UuBS1zPiWX49g11qr19h39Xjm06nG-VMNdH4dkwNiO9qwYWe1dCN5UPwIFNYSpNmoMUw1hKuCD3WsXo9Zi0Fj3Gzfahl9XCklpBj13M3KmX3dnjVdBW9NoU1pvdKdKZ___6BM5sozg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Singularity functions for fractional processes: application to the fractional Brownian sheet</title><source>Alma/SFX Local Collection</source><source>NUMDAM</source><creator>Cohen, Serge ; Guyon, Xavier ; Perrin, Olivier ; Pontier, Monique</creator><creatorcontrib>Cohen, Serge ; Guyon, Xavier ; Perrin, Olivier ; Pontier, Monique</creatorcontrib><description>In this paper almost sure convergence and asymptotic normality of generalized quadratic variation are studied. The main result in this paper extend classical results from Baxter and Gladyshev so that they can be applied to fractional Gaussian processes. An application to the estimation of the true axes of a fractional Brownian sheet is also obtained. On étudie dans ce papier les propriétés de convergence et de normalité asymptotique des variations quadratiques généralisées d'un champ brownien fractionnaire. Le résultat principal est une extension des résultats classiques de Baxter et Gladyshev au cas de processus gaussiens fractionnaires. Nous appliquons ce résultat à l'estimation de la direction privilégiée de tels processus.</description><identifier>ISSN: 0246-0203</identifier><identifier>EISSN: 1778-7017</identifier><identifier>DOI: 10.1016/j.anihpb.2005.03.002</identifier><identifier>CODEN: AHPBAR</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Anisotropy ; Estimation ; Exact sciences and technology ; Fractional Brownian sheet ; Generalized quadratic variations ; Mathematics ; Multivariate analysis ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics ; Statistics Theory ; Stochastic processes</subject><ispartof>Annales de l'I.H.P. Probabilités et statistiques, 2006-01, Vol.42 (2), p.187-205</ispartof><rights>2005 Elsevier SAS</rights><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-a8fe2ee8c1377964396f6f6a4bb44a38ca7a85032d20dc3b3198f286c9741d93</citedby><orcidid>0009-0009-4427-0639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17471180$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00272022$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Serge</creatorcontrib><creatorcontrib>Guyon, Xavier</creatorcontrib><creatorcontrib>Perrin, Olivier</creatorcontrib><creatorcontrib>Pontier, Monique</creatorcontrib><title>Singularity functions for fractional processes: application to the fractional Brownian sheet</title><title>Annales de l'I.H.P. Probabilités et statistiques</title><description>In this paper almost sure convergence and asymptotic normality of generalized quadratic variation are studied. The main result in this paper extend classical results from Baxter and Gladyshev so that they can be applied to fractional Gaussian processes. An application to the estimation of the true axes of a fractional Brownian sheet is also obtained. On étudie dans ce papier les propriétés de convergence et de normalité asymptotique des variations quadratiques généralisées d'un champ brownien fractionnaire. Le résultat principal est une extension des résultats classiques de Baxter et Gladyshev au cas de processus gaussiens fractionnaires. Nous appliquons ce résultat à l'estimation de la direction privilégiée de tels processus.</description><subject>Anisotropy</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Fractional Brownian sheet</subject><subject>Generalized quadratic variations</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Statistics Theory</subject><subject>Stochastic processes</subject><issn>0246-0203</issn><issn>1778-7017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxiyMDAknD8aJwxIpeJLqsRARyTr4jjUVYgjOy3qvychCJjQDdbZz3PWvYScU0go0PRqk2Bj122RMIBZAjwBYAdkQqXMYglUHpIJMJHGwIAfk5MQNgCQ5pBOyOuLbd62NXrb7aNq2-jOuiZElfNR5fGrwzpqvdMmBBOuI2zb2mocHqLORd3a_AVvvftoLDZRWBvTnZKjCutgzr7PKVnd360Wj_Hy-eFpMV_GmkvoYswqw4zJNOVS5qngeVr1haIohECeaZSYzYCzkkGpecFpnlUsS3UuBS1zPiWX49g11qr19h39Xjm06nG-VMNdH4dkwNiO9qwYWe1dCN5UPwIFNYSpNmoMUw1hKuCD3WsXo9Zi0Fj3Gzfahl9XCklpBj13M3KmX3dnjVdBW9NoU1pvdKdKZ___6BM5sozg</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Cohen, Serge</creator><creator>Guyon, Xavier</creator><creator>Perrin, Olivier</creator><creator>Pontier, Monique</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><general>Institut Henri Poincaré (IHP)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0009-4427-0639</orcidid></search><sort><creationdate>20060101</creationdate><title>Singularity functions for fractional processes: application to the fractional Brownian sheet</title><author>Cohen, Serge ; Guyon, Xavier ; Perrin, Olivier ; Pontier, Monique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-a8fe2ee8c1377964396f6f6a4bb44a38ca7a85032d20dc3b3198f286c9741d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropy</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Fractional Brownian sheet</topic><topic>Generalized quadratic variations</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Statistics Theory</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Serge</creatorcontrib><creatorcontrib>Guyon, Xavier</creatorcontrib><creatorcontrib>Perrin, Olivier</creatorcontrib><creatorcontrib>Pontier, Monique</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annales de l'I.H.P. Probabilités et statistiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Serge</au><au>Guyon, Xavier</au><au>Perrin, Olivier</au><au>Pontier, Monique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularity functions for fractional processes: application to the fractional Brownian sheet</atitle><jtitle>Annales de l'I.H.P. Probabilités et statistiques</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>42</volume><issue>2</issue><spage>187</spage><epage>205</epage><pages>187-205</pages><issn>0246-0203</issn><eissn>1778-7017</eissn><coden>AHPBAR</coden><abstract>In this paper almost sure convergence and asymptotic normality of generalized quadratic variation are studied. The main result in this paper extend classical results from Baxter and Gladyshev so that they can be applied to fractional Gaussian processes. An application to the estimation of the true axes of a fractional Brownian sheet is also obtained. On étudie dans ce papier les propriétés de convergence et de normalité asymptotique des variations quadratiques généralisées d'un champ brownien fractionnaire. Le résultat principal est une extension des résultats classiques de Baxter et Gladyshev au cas de processus gaussiens fractionnaires. Nous appliquons ce résultat à l'estimation de la direction privilégiée de tels processus.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.anihpb.2005.03.002</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0009-4427-0639</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0246-0203
ispartof Annales de l'I.H.P. Probabilités et statistiques, 2006-01, Vol.42 (2), p.187-205
issn 0246-0203
1778-7017
language eng
recordid cdi_hal_primary_oai_HAL_hal_00272022v1
source Alma/SFX Local Collection; NUMDAM
subjects Anisotropy
Estimation
Exact sciences and technology
Fractional Brownian sheet
Generalized quadratic variations
Mathematics
Multivariate analysis
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistics
Statistics Theory
Stochastic processes
title Singularity functions for fractional processes: application to the fractional Brownian sheet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularity%20functions%20for%20fractional%20processes:%20application%20to%20the%20fractional%20Brownian%20sheet&rft.jtitle=Annales%20de%20l'I.H.P.%20Probabilit%C3%A9s%20et%20statistiques&rft.au=Cohen,%20Serge&rft.date=2006-01-01&rft.volume=42&rft.issue=2&rft.spage=187&rft.epage=205&rft.pages=187-205&rft.issn=0246-0203&rft.eissn=1778-7017&rft.coden=AHPBAR&rft_id=info:doi/10.1016/j.anihpb.2005.03.002&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00272022v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0246020305000580&rfr_iscdi=true