Model to determine the depth of a diffusion layer by normal indentations to the surface

Diffusion in steels may result of one or several elements entering or leaving the material in the vicinity of the outer surface, facilitated by the presence of a temperature gradient. As a consequence, the diffusion process produces a diffusion layer which in turn generates a gradient of the mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2008-04, Vol.202 (14), p.3419-3426
Hauptverfasser: Mercier, D., Decoopman, X., Chicot, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3426
container_issue 14
container_start_page 3419
container_title Surface & coatings technology
container_volume 202
creator Mercier, D.
Decoopman, X.
Chicot, D.
description Diffusion in steels may result of one or several elements entering or leaving the material in the vicinity of the outer surface, facilitated by the presence of a temperature gradient. As a consequence, the diffusion process produces a diffusion layer which in turn generates a gradient of the mechanical properties of such layer. Generally, the characterization of the treated material requires the preparation of cross-sections in order to obtain the hardness–depth profile by indentation and to study the evolution of the microstructure across them. This procedure usually needs long time of preparation, is often tedious, and leads to a permanent damage of the sample. In the present work, we propose a different method of analysis, i.e. performing the indentations perpendicularly to the surface of the material without the need of cross-section preparation. To construct the hardness–depth profile, we propose a model using an exponential law which is based on the hemispherical expansion of the plastic zone deformation generated during the indentation process under the residual indent. From the application of the model, we defined a criterion representing the depth of the diffusion zone. The hardness–depth profile model and the depth-diffusion criterion are both validated for a steel decarburised under 4 situations aiming to a carbon content at the surface ranging between 0.1 and 0.4% respectively from an initial content of 0.55% C in the starting material.
doi_str_mv 10.1016/j.surfcoat.2007.12.010
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00262131v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897207012613</els_id><sourcerecordid>32427180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-a822614797ad9d219b2ac23908d8fced59951961a13192eccf29e5a3769a8c383</originalsourceid><addsrcrecordid>eNqFkMGOFCEURYnRxHb0FwwbTVxUDTyqimLnZKLOJG3caFySN_AqTae6aIGepP9eKj3O1hUBzr0PDmPvpWilkMP1vs2nNLmIpQUhdCuhFVK8YBs5atMo1emXbCOg181oNLxmb3LeCyGkNt2G_f4ePc28RO6pUDqEhXjZUd0dy47HiSP3YZpOOcSFz3imxB_OfInpgDMPi6elYKl3ea1Yg-tb0NFb9mrCOdO7p_WK_fr65eftXbP98e3-9mbbuE7o0uAIMMhOG43eeJDmAdCBMmL04-TI98b00gwSpZIGyLkJDPWo9GBwdGpUV-zTpXeHsz2mcMB0thGDvbvZ2vVMCBigph9lZT9e2GOKf06Uiz2E7GiecaF4ylZBB1qOooLDBXQp5pxoem6Wwq7O7d7-c25X51aCrc5r8MPTBMwO5ynh4kJ-ToMANYLpK_f5wlFV8xgo2ewCLfXDIZEr1sfwv1F_AVexmhM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32427180</pqid></control><display><type>article</type><title>Model to determine the depth of a diffusion layer by normal indentations to the surface</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mercier, D. ; Decoopman, X. ; Chicot, D.</creator><creatorcontrib>Mercier, D. ; Decoopman, X. ; Chicot, D.</creatorcontrib><description>Diffusion in steels may result of one or several elements entering or leaving the material in the vicinity of the outer surface, facilitated by the presence of a temperature gradient. As a consequence, the diffusion process produces a diffusion layer which in turn generates a gradient of the mechanical properties of such layer. Generally, the characterization of the treated material requires the preparation of cross-sections in order to obtain the hardness–depth profile by indentation and to study the evolution of the microstructure across them. This procedure usually needs long time of preparation, is often tedious, and leads to a permanent damage of the sample. In the present work, we propose a different method of analysis, i.e. performing the indentations perpendicularly to the surface of the material without the need of cross-section preparation. To construct the hardness–depth profile, we propose a model using an exponential law which is based on the hemispherical expansion of the plastic zone deformation generated during the indentation process under the residual indent. From the application of the model, we defined a criterion representing the depth of the diffusion zone. The hardness–depth profile model and the depth-diffusion criterion are both validated for a steel decarburised under 4 situations aiming to a carbon content at the surface ranging between 0.1 and 0.4% respectively from an initial content of 0.55% C in the starting material.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2007.12.010</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Decarburisation ; Diffusion layer ; Exact sciences and technology ; Hardness ; Materials science ; Physics ; Surface treatments</subject><ispartof>Surface &amp; coatings technology, 2008-04, Vol.202 (14), p.3419-3426</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-a822614797ad9d219b2ac23908d8fced59951961a13192eccf29e5a3769a8c383</citedby><cites>FETCH-LOGICAL-c407t-a822614797ad9d219b2ac23908d8fced59951961a13192eccf29e5a3769a8c383</cites><orcidid>0000-0002-5203-3168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2007.12.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20238295$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00262131$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mercier, D.</creatorcontrib><creatorcontrib>Decoopman, X.</creatorcontrib><creatorcontrib>Chicot, D.</creatorcontrib><title>Model to determine the depth of a diffusion layer by normal indentations to the surface</title><title>Surface &amp; coatings technology</title><description>Diffusion in steels may result of one or several elements entering or leaving the material in the vicinity of the outer surface, facilitated by the presence of a temperature gradient. As a consequence, the diffusion process produces a diffusion layer which in turn generates a gradient of the mechanical properties of such layer. Generally, the characterization of the treated material requires the preparation of cross-sections in order to obtain the hardness–depth profile by indentation and to study the evolution of the microstructure across them. This procedure usually needs long time of preparation, is often tedious, and leads to a permanent damage of the sample. In the present work, we propose a different method of analysis, i.e. performing the indentations perpendicularly to the surface of the material without the need of cross-section preparation. To construct the hardness–depth profile, we propose a model using an exponential law which is based on the hemispherical expansion of the plastic zone deformation generated during the indentation process under the residual indent. From the application of the model, we defined a criterion representing the depth of the diffusion zone. The hardness–depth profile model and the depth-diffusion criterion are both validated for a steel decarburised under 4 situations aiming to a carbon content at the surface ranging between 0.1 and 0.4% respectively from an initial content of 0.55% C in the starting material.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Decarburisation</subject><subject>Diffusion layer</subject><subject>Exact sciences and technology</subject><subject>Hardness</subject><subject>Materials science</subject><subject>Physics</subject><subject>Surface treatments</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMGOFCEURYnRxHb0FwwbTVxUDTyqimLnZKLOJG3caFySN_AqTae6aIGepP9eKj3O1hUBzr0PDmPvpWilkMP1vs2nNLmIpQUhdCuhFVK8YBs5atMo1emXbCOg181oNLxmb3LeCyGkNt2G_f4ePc28RO6pUDqEhXjZUd0dy47HiSP3YZpOOcSFz3imxB_OfInpgDMPi6elYKl3ea1Yg-tb0NFb9mrCOdO7p_WK_fr65eftXbP98e3-9mbbuE7o0uAIMMhOG43eeJDmAdCBMmL04-TI98b00gwSpZIGyLkJDPWo9GBwdGpUV-zTpXeHsz2mcMB0thGDvbvZ2vVMCBigph9lZT9e2GOKf06Uiz2E7GiecaF4ylZBB1qOooLDBXQp5pxoem6Wwq7O7d7-c25X51aCrc5r8MPTBMwO5ynh4kJ-ToMANYLpK_f5wlFV8xgo2ewCLfXDIZEr1sfwv1F_AVexmhM</recordid><startdate>20080415</startdate><enddate>20080415</enddate><creator>Mercier, D.</creator><creator>Decoopman, X.</creator><creator>Chicot, D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5203-3168</orcidid></search><sort><creationdate>20080415</creationdate><title>Model to determine the depth of a diffusion layer by normal indentations to the surface</title><author>Mercier, D. ; Decoopman, X. ; Chicot, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-a822614797ad9d219b2ac23908d8fced59951961a13192eccf29e5a3769a8c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Decarburisation</topic><topic>Diffusion layer</topic><topic>Exact sciences and technology</topic><topic>Hardness</topic><topic>Materials science</topic><topic>Physics</topic><topic>Surface treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mercier, D.</creatorcontrib><creatorcontrib>Decoopman, X.</creatorcontrib><creatorcontrib>Chicot, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mercier, D.</au><au>Decoopman, X.</au><au>Chicot, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model to determine the depth of a diffusion layer by normal indentations to the surface</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2008-04-15</date><risdate>2008</risdate><volume>202</volume><issue>14</issue><spage>3419</spage><epage>3426</epage><pages>3419-3426</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>Diffusion in steels may result of one or several elements entering or leaving the material in the vicinity of the outer surface, facilitated by the presence of a temperature gradient. As a consequence, the diffusion process produces a diffusion layer which in turn generates a gradient of the mechanical properties of such layer. Generally, the characterization of the treated material requires the preparation of cross-sections in order to obtain the hardness–depth profile by indentation and to study the evolution of the microstructure across them. This procedure usually needs long time of preparation, is often tedious, and leads to a permanent damage of the sample. In the present work, we propose a different method of analysis, i.e. performing the indentations perpendicularly to the surface of the material without the need of cross-section preparation. To construct the hardness–depth profile, we propose a model using an exponential law which is based on the hemispherical expansion of the plastic zone deformation generated during the indentation process under the residual indent. From the application of the model, we defined a criterion representing the depth of the diffusion zone. The hardness–depth profile model and the depth-diffusion criterion are both validated for a steel decarburised under 4 situations aiming to a carbon content at the surface ranging between 0.1 and 0.4% respectively from an initial content of 0.55% C in the starting material.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2007.12.010</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5203-3168</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2008-04, Vol.202 (14), p.3419-3426
issn 0257-8972
1879-3347
language eng
recordid cdi_hal_primary_oai_HAL_hal_00262131v1
source Elsevier ScienceDirect Journals Complete
subjects Cross-disciplinary physics: materials science
rheology
Decarburisation
Diffusion layer
Exact sciences and technology
Hardness
Materials science
Physics
Surface treatments
title Model to determine the depth of a diffusion layer by normal indentations to the surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20to%20determine%20the%20depth%20of%20a%20diffusion%20layer%20by%20normal%20indentations%20to%20the%20surface&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Mercier,%20D.&rft.date=2008-04-15&rft.volume=202&rft.issue=14&rft.spage=3419&rft.epage=3426&rft.pages=3419-3426&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2007.12.010&rft_dat=%3Cproquest_hal_p%3E32427180%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32427180&rft_id=info:pmid/&rft_els_id=S0257897207012613&rfr_iscdi=true