An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity
Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biology 2007-04, Vol.27 (7), p.2661-75 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 7 |
container_start_page | 2661 |
container_title | Molecular and cellular biology |
container_volume | 27 |
creator | Stankovic-Valentin, Nicolas Deltour, Sophie Seeler, Jacob Pinte, Sébastien Vergoten, Gérard Guérardel, Cateline Dejean, Anne Leprince, Dominique |
description | Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal BTB/POZ repression domain. Here, we show that endogenous HIC1 is SUMOylated in vivo on a phylogenetically conserved lysine, K314, located in the central region which is a second repression domain. K314R mutation does not influence HIC1 subnuclear localization but significantly reduces its transcriptional repression potential, as does the mutation of the other conserved residue in the psiKXE consensus, E316A, or the overexpression of the deSUMOylase SSP3/SENP2. Furthermore, HIC1 is acetylated in vitro by P300/CBP. Strikingly, the K314R mutant is less acetylated than wild-type HIC1, suggesting that this lysine is a target for both SUMOylation and acetylation. We further show that HIC1 transcriptional repression activity is positively controlled by two types of deacetylases, SIRT1 and HDAC4, which increase the deacetylation and SUMOylation, respectively, of K314. Knockdown of endogenous SIRT1 by the transfection of short interfering RNA causes a significant loss of HIC1 SUMOylation. Thus, this dual-deacetylase complex induces either a phosphorylation-dependent acetylation-SUMOylation switch through a psiKXEXXSP motif, as previously shown for MEF2, or a phosphorylation-independent switch through a psiKXEP motif, as shown here for HIC1, since P317A mutation severely impairs HIC1 acetylation. Finally, our results demonstrate that HIC1 is a target of the class III deacetylase SIRT1 and identify a new posttranslational modification step in the P53-HIC1-SIRT1 regulatory loop. |
doi_str_mv | 10.1128/mcb.01098-06 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00247517v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70260506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1316-aa8589ec50106dce864c450b67d06b449f46d79f54bbfea65c63026ee5456fdf3</originalsourceid><addsrcrecordid>eNpNkc1u1DAUhS1ERYfCjjXyColF2uvEdpLlaNQyFVO1UqnELnKcm4mR84PtDMpD8Y542gGxuucefz5Hsgn5wOCSsbS46nV9CQzKIgH5iqyelRC8fE1WkOaQ5BnIc_LW-x8AIEvI3pBzlqdFtOWK_F4PVGkMi1XBjMNVg_9tyePT3f1JU__LBN3R0Llx3ndU0alb7LjHAYPRytqF6nHw6A7Y0Mmbr9-vH2g_BtNSM8RbSMPcj476eZoceh_l9nbDqMP9HBvQ0-DU4LUz07FO2XjyDB67lQ7mYMLyjpy1ynp8f5oX5Onm-ttmm-zuv9xu1rtEs4zJRKlCFCVqEd9FNhoLyTUXUMu8AVlzXrZcNnnZCl7XLSoptMwglYiCC9k2bXZBPr_kdspWkzO9cks1KlNt17vq6AGkPBcsP7DIfnphJzf-nNGHqjdeo7VqwHH2VR6TQYCM4McTONc9Nv9y_35G9gdGZ4_-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70260506</pqid></control><display><type>article</type><title>An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Stankovic-Valentin, Nicolas ; Deltour, Sophie ; Seeler, Jacob ; Pinte, Sébastien ; Vergoten, Gérard ; Guérardel, Cateline ; Dejean, Anne ; Leprince, Dominique</creator><creatorcontrib>Stankovic-Valentin, Nicolas ; Deltour, Sophie ; Seeler, Jacob ; Pinte, Sébastien ; Vergoten, Gérard ; Guérardel, Cateline ; Dejean, Anne ; Leprince, Dominique</creatorcontrib><description>Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal BTB/POZ repression domain. Here, we show that endogenous HIC1 is SUMOylated in vivo on a phylogenetically conserved lysine, K314, located in the central region which is a second repression domain. K314R mutation does not influence HIC1 subnuclear localization but significantly reduces its transcriptional repression potential, as does the mutation of the other conserved residue in the psiKXE consensus, E316A, or the overexpression of the deSUMOylase SSP3/SENP2. Furthermore, HIC1 is acetylated in vitro by P300/CBP. Strikingly, the K314R mutant is less acetylated than wild-type HIC1, suggesting that this lysine is a target for both SUMOylation and acetylation. We further show that HIC1 transcriptional repression activity is positively controlled by two types of deacetylases, SIRT1 and HDAC4, which increase the deacetylation and SUMOylation, respectively, of K314. Knockdown of endogenous SIRT1 by the transfection of short interfering RNA causes a significant loss of HIC1 SUMOylation. Thus, this dual-deacetylase complex induces either a phosphorylation-dependent acetylation-SUMOylation switch through a psiKXEXXSP motif, as previously shown for MEF2, or a phosphorylation-independent switch through a psiKXEP motif, as shown here for HIC1, since P317A mutation severely impairs HIC1 acetylation. Finally, our results demonstrate that HIC1 is a target of the class III deacetylase SIRT1 and identify a new posttranslational modification step in the P53-HIC1-SIRT1 regulatory loop.</description><identifier>ISSN: 0270-7306</identifier><identifier>EISSN: 1098-5549</identifier><identifier>DOI: 10.1128/mcb.01098-06</identifier><identifier>PMID: 17283066</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Acetylation ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Biochemistry, Molecular Biology ; Cell Line ; Cell Nucleus ; Cell Nucleus - metabolism ; Conserved Sequence ; DNA-Binding Proteins ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Histone Deacetylases ; Histone Deacetylases - metabolism ; Humans ; Kruppel-Like Transcription Factors ; Life Sciences ; Lysine ; Lysine - metabolism ; Molecular Sequence Data ; Mutation ; p300-CBP Transcription Factors ; p300-CBP Transcription Factors - metabolism ; Phosphorylation ; Phylogeny ; RNA, Small Interfering ; RNA, Small Interfering - genetics ; Sirtuin 1 ; Sirtuins ; Sirtuins - genetics ; Sirtuins - metabolism ; SUMO-1 Protein ; SUMO-1 Protein - metabolism ; Transcription Factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular and cellular biology, 2007-04, Vol.27 (7), p.2661-75</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1316-aa8589ec50106dce864c450b67d06b449f46d79f54bbfea65c63026ee5456fdf3</citedby><orcidid>0000-0002-8846-1113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17283066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00247517$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stankovic-Valentin, Nicolas</creatorcontrib><creatorcontrib>Deltour, Sophie</creatorcontrib><creatorcontrib>Seeler, Jacob</creatorcontrib><creatorcontrib>Pinte, Sébastien</creatorcontrib><creatorcontrib>Vergoten, Gérard</creatorcontrib><creatorcontrib>Guérardel, Cateline</creatorcontrib><creatorcontrib>Dejean, Anne</creatorcontrib><creatorcontrib>Leprince, Dominique</creatorcontrib><title>An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity</title><title>Molecular and cellular biology</title><addtitle>Mol Cell Biol</addtitle><description>Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal BTB/POZ repression domain. Here, we show that endogenous HIC1 is SUMOylated in vivo on a phylogenetically conserved lysine, K314, located in the central region which is a second repression domain. K314R mutation does not influence HIC1 subnuclear localization but significantly reduces its transcriptional repression potential, as does the mutation of the other conserved residue in the psiKXE consensus, E316A, or the overexpression of the deSUMOylase SSP3/SENP2. Furthermore, HIC1 is acetylated in vitro by P300/CBP. Strikingly, the K314R mutant is less acetylated than wild-type HIC1, suggesting that this lysine is a target for both SUMOylation and acetylation. We further show that HIC1 transcriptional repression activity is positively controlled by two types of deacetylases, SIRT1 and HDAC4, which increase the deacetylation and SUMOylation, respectively, of K314. Knockdown of endogenous SIRT1 by the transfection of short interfering RNA causes a significant loss of HIC1 SUMOylation. Thus, this dual-deacetylase complex induces either a phosphorylation-dependent acetylation-SUMOylation switch through a psiKXEXXSP motif, as previously shown for MEF2, or a phosphorylation-independent switch through a psiKXEP motif, as shown here for HIC1, since P317A mutation severely impairs HIC1 acetylation. Finally, our results demonstrate that HIC1 is a target of the class III deacetylase SIRT1 and identify a new posttranslational modification step in the P53-HIC1-SIRT1 regulatory loop.</description><subject>Acetylation</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell Line</subject><subject>Cell Nucleus</subject><subject>Cell Nucleus - metabolism</subject><subject>Conserved Sequence</subject><subject>DNA-Binding Proteins</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Histone Deacetylases</subject><subject>Histone Deacetylases - metabolism</subject><subject>Humans</subject><subject>Kruppel-Like Transcription Factors</subject><subject>Life Sciences</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>p300-CBP Transcription Factors</subject><subject>p300-CBP Transcription Factors - metabolism</subject><subject>Phosphorylation</subject><subject>Phylogeny</subject><subject>RNA, Small Interfering</subject><subject>RNA, Small Interfering - genetics</subject><subject>Sirtuin 1</subject><subject>Sirtuins</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - metabolism</subject><subject>SUMO-1 Protein</subject><subject>SUMO-1 Protein - metabolism</subject><subject>Transcription Factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0270-7306</issn><issn>1098-5549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkc1u1DAUhS1ERYfCjjXyColF2uvEdpLlaNQyFVO1UqnELnKcm4mR84PtDMpD8Y542gGxuucefz5Hsgn5wOCSsbS46nV9CQzKIgH5iqyelRC8fE1WkOaQ5BnIc_LW-x8AIEvI3pBzlqdFtOWK_F4PVGkMi1XBjMNVg_9tyePT3f1JU__LBN3R0Llx3ndU0alb7LjHAYPRytqF6nHw6A7Y0Mmbr9-vH2g_BtNSM8RbSMPcj476eZoceh_l9nbDqMP9HBvQ0-DU4LUz07FO2XjyDB67lQ7mYMLyjpy1ynp8f5oX5Onm-ttmm-zuv9xu1rtEs4zJRKlCFCVqEd9FNhoLyTUXUMu8AVlzXrZcNnnZCl7XLSoptMwglYiCC9k2bXZBPr_kdspWkzO9cks1KlNt17vq6AGkPBcsP7DIfnphJzf-nNGHqjdeo7VqwHH2VR6TQYCM4McTONc9Nv9y_35G9gdGZ4_-</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Stankovic-Valentin, Nicolas</creator><creator>Deltour, Sophie</creator><creator>Seeler, Jacob</creator><creator>Pinte, Sébastien</creator><creator>Vergoten, Gérard</creator><creator>Guérardel, Cateline</creator><creator>Dejean, Anne</creator><creator>Leprince, Dominique</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8846-1113</orcidid></search><sort><creationdate>200704</creationdate><title>An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity</title><author>Stankovic-Valentin, Nicolas ; Deltour, Sophie ; Seeler, Jacob ; Pinte, Sébastien ; Vergoten, Gérard ; Guérardel, Cateline ; Dejean, Anne ; Leprince, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1316-aa8589ec50106dce864c450b67d06b449f46d79f54bbfea65c63026ee5456fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acetylation</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell Line</topic><topic>Cell Nucleus</topic><topic>Cell Nucleus - metabolism</topic><topic>Conserved Sequence</topic><topic>DNA-Binding Proteins</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Histone Deacetylases</topic><topic>Histone Deacetylases - metabolism</topic><topic>Humans</topic><topic>Kruppel-Like Transcription Factors</topic><topic>Life Sciences</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>p300-CBP Transcription Factors</topic><topic>p300-CBP Transcription Factors - metabolism</topic><topic>Phosphorylation</topic><topic>Phylogeny</topic><topic>RNA, Small Interfering</topic><topic>RNA, Small Interfering - genetics</topic><topic>Sirtuin 1</topic><topic>Sirtuins</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - metabolism</topic><topic>SUMO-1 Protein</topic><topic>SUMO-1 Protein - metabolism</topic><topic>Transcription Factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stankovic-Valentin, Nicolas</creatorcontrib><creatorcontrib>Deltour, Sophie</creatorcontrib><creatorcontrib>Seeler, Jacob</creatorcontrib><creatorcontrib>Pinte, Sébastien</creatorcontrib><creatorcontrib>Vergoten, Gérard</creatorcontrib><creatorcontrib>Guérardel, Cateline</creatorcontrib><creatorcontrib>Dejean, Anne</creatorcontrib><creatorcontrib>Leprince, Dominique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular and cellular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stankovic-Valentin, Nicolas</au><au>Deltour, Sophie</au><au>Seeler, Jacob</au><au>Pinte, Sébastien</au><au>Vergoten, Gérard</au><au>Guérardel, Cateline</au><au>Dejean, Anne</au><au>Leprince, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity</atitle><jtitle>Molecular and cellular biology</jtitle><addtitle>Mol Cell Biol</addtitle><date>2007-04</date><risdate>2007</risdate><volume>27</volume><issue>7</issue><spage>2661</spage><epage>75</epage><pages>2661-75</pages><issn>0270-7306</issn><eissn>1098-5549</eissn><abstract>Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal BTB/POZ repression domain. Here, we show that endogenous HIC1 is SUMOylated in vivo on a phylogenetically conserved lysine, K314, located in the central region which is a second repression domain. K314R mutation does not influence HIC1 subnuclear localization but significantly reduces its transcriptional repression potential, as does the mutation of the other conserved residue in the psiKXE consensus, E316A, or the overexpression of the deSUMOylase SSP3/SENP2. Furthermore, HIC1 is acetylated in vitro by P300/CBP. Strikingly, the K314R mutant is less acetylated than wild-type HIC1, suggesting that this lysine is a target for both SUMOylation and acetylation. We further show that HIC1 transcriptional repression activity is positively controlled by two types of deacetylases, SIRT1 and HDAC4, which increase the deacetylation and SUMOylation, respectively, of K314. Knockdown of endogenous SIRT1 by the transfection of short interfering RNA causes a significant loss of HIC1 SUMOylation. Thus, this dual-deacetylase complex induces either a phosphorylation-dependent acetylation-SUMOylation switch through a psiKXEXXSP motif, as previously shown for MEF2, or a phosphorylation-independent switch through a psiKXEP motif, as shown here for HIC1, since P317A mutation severely impairs HIC1 acetylation. Finally, our results demonstrate that HIC1 is a target of the class III deacetylase SIRT1 and identify a new posttranslational modification step in the P53-HIC1-SIRT1 regulatory loop.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>17283066</pmid><doi>10.1128/mcb.01098-06</doi><tpages>-2585</tpages><orcidid>https://orcid.org/0000-0002-8846-1113</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-7306 |
ispartof | Molecular and cellular biology, 2007-04, Vol.27 (7), p.2661-75 |
issn | 0270-7306 1098-5549 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00247517v1 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acetylation Amino Acid Motifs Amino Acid Sequence Animals Biochemistry, Molecular Biology Cell Line Cell Nucleus Cell Nucleus - metabolism Conserved Sequence DNA-Binding Proteins DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Histone Deacetylases Histone Deacetylases - metabolism Humans Kruppel-Like Transcription Factors Life Sciences Lysine Lysine - metabolism Molecular Sequence Data Mutation p300-CBP Transcription Factors p300-CBP Transcription Factors - metabolism Phosphorylation Phylogeny RNA, Small Interfering RNA, Small Interfering - genetics Sirtuin 1 Sirtuins Sirtuins - genetics Sirtuins - metabolism SUMO-1 Protein SUMO-1 Protein - metabolism Transcription Factors Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic |
title | An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20acetylation/deacetylation-SUMOylation%20switch%20through%20a%20phylogenetically%20conserved%20psiKXEP%20motif%20in%20the%20tumor%20suppressor%20HIC1%20regulates%20transcriptional%20repression%20activity&rft.jtitle=Molecular%20and%20cellular%20biology&rft.au=Stankovic-Valentin,%20Nicolas&rft.date=2007-04&rft.volume=27&rft.issue=7&rft.spage=2661&rft.epage=75&rft.pages=2661-75&rft.issn=0270-7306&rft.eissn=1098-5549&rft_id=info:doi/10.1128/mcb.01098-06&rft_dat=%3Cproquest_hal_p%3E70260506%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70260506&rft_id=info:pmid/17283066&rfr_iscdi=true |