An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity

Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biology 2007-04, Vol.27 (7), p.2661-75
Hauptverfasser: Stankovic-Valentin, Nicolas, Deltour, Sophie, Seeler, Jacob, Pinte, Sébastien, Vergoten, Gérard, Guérardel, Cateline, Dejean, Anne, Leprince, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 7
container_start_page 2661
container_title Molecular and cellular biology
container_volume 27
creator Stankovic-Valentin, Nicolas
Deltour, Sophie
Seeler, Jacob
Pinte, Sébastien
Vergoten, Gérard
Guérardel, Cateline
Dejean, Anne
Leprince, Dominique
description Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal BTB/POZ repression domain. Here, we show that endogenous HIC1 is SUMOylated in vivo on a phylogenetically conserved lysine, K314, located in the central region which is a second repression domain. K314R mutation does not influence HIC1 subnuclear localization but significantly reduces its transcriptional repression potential, as does the mutation of the other conserved residue in the psiKXE consensus, E316A, or the overexpression of the deSUMOylase SSP3/SENP2. Furthermore, HIC1 is acetylated in vitro by P300/CBP. Strikingly, the K314R mutant is less acetylated than wild-type HIC1, suggesting that this lysine is a target for both SUMOylation and acetylation. We further show that HIC1 transcriptional repression activity is positively controlled by two types of deacetylases, SIRT1 and HDAC4, which increase the deacetylation and SUMOylation, respectively, of K314. Knockdown of endogenous SIRT1 by the transfection of short interfering RNA causes a significant loss of HIC1 SUMOylation. Thus, this dual-deacetylase complex induces either a phosphorylation-dependent acetylation-SUMOylation switch through a psiKXEXXSP motif, as previously shown for MEF2, or a phosphorylation-independent switch through a psiKXEP motif, as shown here for HIC1, since P317A mutation severely impairs HIC1 acetylation. Finally, our results demonstrate that HIC1 is a target of the class III deacetylase SIRT1 and identify a new posttranslational modification step in the P53-HIC1-SIRT1 regulatory loop.
doi_str_mv 10.1128/mcb.01098-06
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00247517v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70260506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1316-aa8589ec50106dce864c450b67d06b449f46d79f54bbfea65c63026ee5456fdf3</originalsourceid><addsrcrecordid>eNpNkc1u1DAUhS1ERYfCjjXyColF2uvEdpLlaNQyFVO1UqnELnKcm4mR84PtDMpD8Y542gGxuucefz5Hsgn5wOCSsbS46nV9CQzKIgH5iqyelRC8fE1WkOaQ5BnIc_LW-x8AIEvI3pBzlqdFtOWK_F4PVGkMi1XBjMNVg_9tyePT3f1JU__LBN3R0Llx3ndU0alb7LjHAYPRytqF6nHw6A7Y0Mmbr9-vH2g_BtNSM8RbSMPcj476eZoceh_l9nbDqMP9HBvQ0-DU4LUz07FO2XjyDB67lQ7mYMLyjpy1ynp8f5oX5Onm-ttmm-zuv9xu1rtEs4zJRKlCFCVqEd9FNhoLyTUXUMu8AVlzXrZcNnnZCl7XLSoptMwglYiCC9k2bXZBPr_kdspWkzO9cks1KlNt17vq6AGkPBcsP7DIfnphJzf-nNGHqjdeo7VqwHH2VR6TQYCM4McTONc9Nv9y_35G9gdGZ4_-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70260506</pqid></control><display><type>article</type><title>An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Stankovic-Valentin, Nicolas ; Deltour, Sophie ; Seeler, Jacob ; Pinte, Sébastien ; Vergoten, Gérard ; Guérardel, Cateline ; Dejean, Anne ; Leprince, Dominique</creator><creatorcontrib>Stankovic-Valentin, Nicolas ; Deltour, Sophie ; Seeler, Jacob ; Pinte, Sébastien ; Vergoten, Gérard ; Guérardel, Cateline ; Dejean, Anne ; Leprince, Dominique</creatorcontrib><description>Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal BTB/POZ repression domain. Here, we show that endogenous HIC1 is SUMOylated in vivo on a phylogenetically conserved lysine, K314, located in the central region which is a second repression domain. K314R mutation does not influence HIC1 subnuclear localization but significantly reduces its transcriptional repression potential, as does the mutation of the other conserved residue in the psiKXE consensus, E316A, or the overexpression of the deSUMOylase SSP3/SENP2. Furthermore, HIC1 is acetylated in vitro by P300/CBP. Strikingly, the K314R mutant is less acetylated than wild-type HIC1, suggesting that this lysine is a target for both SUMOylation and acetylation. We further show that HIC1 transcriptional repression activity is positively controlled by two types of deacetylases, SIRT1 and HDAC4, which increase the deacetylation and SUMOylation, respectively, of K314. Knockdown of endogenous SIRT1 by the transfection of short interfering RNA causes a significant loss of HIC1 SUMOylation. Thus, this dual-deacetylase complex induces either a phosphorylation-dependent acetylation-SUMOylation switch through a psiKXEXXSP motif, as previously shown for MEF2, or a phosphorylation-independent switch through a psiKXEP motif, as shown here for HIC1, since P317A mutation severely impairs HIC1 acetylation. Finally, our results demonstrate that HIC1 is a target of the class III deacetylase SIRT1 and identify a new posttranslational modification step in the P53-HIC1-SIRT1 regulatory loop.</description><identifier>ISSN: 0270-7306</identifier><identifier>EISSN: 1098-5549</identifier><identifier>DOI: 10.1128/mcb.01098-06</identifier><identifier>PMID: 17283066</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Acetylation ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Biochemistry, Molecular Biology ; Cell Line ; Cell Nucleus ; Cell Nucleus - metabolism ; Conserved Sequence ; DNA-Binding Proteins ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Histone Deacetylases ; Histone Deacetylases - metabolism ; Humans ; Kruppel-Like Transcription Factors ; Life Sciences ; Lysine ; Lysine - metabolism ; Molecular Sequence Data ; Mutation ; p300-CBP Transcription Factors ; p300-CBP Transcription Factors - metabolism ; Phosphorylation ; Phylogeny ; RNA, Small Interfering ; RNA, Small Interfering - genetics ; Sirtuin 1 ; Sirtuins ; Sirtuins - genetics ; Sirtuins - metabolism ; SUMO-1 Protein ; SUMO-1 Protein - metabolism ; Transcription Factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular and cellular biology, 2007-04, Vol.27 (7), p.2661-75</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1316-aa8589ec50106dce864c450b67d06b449f46d79f54bbfea65c63026ee5456fdf3</citedby><orcidid>0000-0002-8846-1113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17283066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00247517$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stankovic-Valentin, Nicolas</creatorcontrib><creatorcontrib>Deltour, Sophie</creatorcontrib><creatorcontrib>Seeler, Jacob</creatorcontrib><creatorcontrib>Pinte, Sébastien</creatorcontrib><creatorcontrib>Vergoten, Gérard</creatorcontrib><creatorcontrib>Guérardel, Cateline</creatorcontrib><creatorcontrib>Dejean, Anne</creatorcontrib><creatorcontrib>Leprince, Dominique</creatorcontrib><title>An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity</title><title>Molecular and cellular biology</title><addtitle>Mol Cell Biol</addtitle><description>Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal BTB/POZ repression domain. Here, we show that endogenous HIC1 is SUMOylated in vivo on a phylogenetically conserved lysine, K314, located in the central region which is a second repression domain. K314R mutation does not influence HIC1 subnuclear localization but significantly reduces its transcriptional repression potential, as does the mutation of the other conserved residue in the psiKXE consensus, E316A, or the overexpression of the deSUMOylase SSP3/SENP2. Furthermore, HIC1 is acetylated in vitro by P300/CBP. Strikingly, the K314R mutant is less acetylated than wild-type HIC1, suggesting that this lysine is a target for both SUMOylation and acetylation. We further show that HIC1 transcriptional repression activity is positively controlled by two types of deacetylases, SIRT1 and HDAC4, which increase the deacetylation and SUMOylation, respectively, of K314. Knockdown of endogenous SIRT1 by the transfection of short interfering RNA causes a significant loss of HIC1 SUMOylation. Thus, this dual-deacetylase complex induces either a phosphorylation-dependent acetylation-SUMOylation switch through a psiKXEXXSP motif, as previously shown for MEF2, or a phosphorylation-independent switch through a psiKXEP motif, as shown here for HIC1, since P317A mutation severely impairs HIC1 acetylation. Finally, our results demonstrate that HIC1 is a target of the class III deacetylase SIRT1 and identify a new posttranslational modification step in the P53-HIC1-SIRT1 regulatory loop.</description><subject>Acetylation</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell Line</subject><subject>Cell Nucleus</subject><subject>Cell Nucleus - metabolism</subject><subject>Conserved Sequence</subject><subject>DNA-Binding Proteins</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Histone Deacetylases</subject><subject>Histone Deacetylases - metabolism</subject><subject>Humans</subject><subject>Kruppel-Like Transcription Factors</subject><subject>Life Sciences</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>p300-CBP Transcription Factors</subject><subject>p300-CBP Transcription Factors - metabolism</subject><subject>Phosphorylation</subject><subject>Phylogeny</subject><subject>RNA, Small Interfering</subject><subject>RNA, Small Interfering - genetics</subject><subject>Sirtuin 1</subject><subject>Sirtuins</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - metabolism</subject><subject>SUMO-1 Protein</subject><subject>SUMO-1 Protein - metabolism</subject><subject>Transcription Factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0270-7306</issn><issn>1098-5549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkc1u1DAUhS1ERYfCjjXyColF2uvEdpLlaNQyFVO1UqnELnKcm4mR84PtDMpD8Y542gGxuucefz5Hsgn5wOCSsbS46nV9CQzKIgH5iqyelRC8fE1WkOaQ5BnIc_LW-x8AIEvI3pBzlqdFtOWK_F4PVGkMi1XBjMNVg_9tyePT3f1JU__LBN3R0Llx3ndU0alb7LjHAYPRytqF6nHw6A7Y0Mmbr9-vH2g_BtNSM8RbSMPcj476eZoceh_l9nbDqMP9HBvQ0-DU4LUz07FO2XjyDB67lQ7mYMLyjpy1ynp8f5oX5Onm-ttmm-zuv9xu1rtEs4zJRKlCFCVqEd9FNhoLyTUXUMu8AVlzXrZcNnnZCl7XLSoptMwglYiCC9k2bXZBPr_kdspWkzO9cks1KlNt17vq6AGkPBcsP7DIfnphJzf-nNGHqjdeo7VqwHH2VR6TQYCM4McTONc9Nv9y_35G9gdGZ4_-</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Stankovic-Valentin, Nicolas</creator><creator>Deltour, Sophie</creator><creator>Seeler, Jacob</creator><creator>Pinte, Sébastien</creator><creator>Vergoten, Gérard</creator><creator>Guérardel, Cateline</creator><creator>Dejean, Anne</creator><creator>Leprince, Dominique</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8846-1113</orcidid></search><sort><creationdate>200704</creationdate><title>An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity</title><author>Stankovic-Valentin, Nicolas ; Deltour, Sophie ; Seeler, Jacob ; Pinte, Sébastien ; Vergoten, Gérard ; Guérardel, Cateline ; Dejean, Anne ; Leprince, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1316-aa8589ec50106dce864c450b67d06b449f46d79f54bbfea65c63026ee5456fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acetylation</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell Line</topic><topic>Cell Nucleus</topic><topic>Cell Nucleus - metabolism</topic><topic>Conserved Sequence</topic><topic>DNA-Binding Proteins</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Histone Deacetylases</topic><topic>Histone Deacetylases - metabolism</topic><topic>Humans</topic><topic>Kruppel-Like Transcription Factors</topic><topic>Life Sciences</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>p300-CBP Transcription Factors</topic><topic>p300-CBP Transcription Factors - metabolism</topic><topic>Phosphorylation</topic><topic>Phylogeny</topic><topic>RNA, Small Interfering</topic><topic>RNA, Small Interfering - genetics</topic><topic>Sirtuin 1</topic><topic>Sirtuins</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - metabolism</topic><topic>SUMO-1 Protein</topic><topic>SUMO-1 Protein - metabolism</topic><topic>Transcription Factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stankovic-Valentin, Nicolas</creatorcontrib><creatorcontrib>Deltour, Sophie</creatorcontrib><creatorcontrib>Seeler, Jacob</creatorcontrib><creatorcontrib>Pinte, Sébastien</creatorcontrib><creatorcontrib>Vergoten, Gérard</creatorcontrib><creatorcontrib>Guérardel, Cateline</creatorcontrib><creatorcontrib>Dejean, Anne</creatorcontrib><creatorcontrib>Leprince, Dominique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular and cellular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stankovic-Valentin, Nicolas</au><au>Deltour, Sophie</au><au>Seeler, Jacob</au><au>Pinte, Sébastien</au><au>Vergoten, Gérard</au><au>Guérardel, Cateline</au><au>Dejean, Anne</au><au>Leprince, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity</atitle><jtitle>Molecular and cellular biology</jtitle><addtitle>Mol Cell Biol</addtitle><date>2007-04</date><risdate>2007</risdate><volume>27</volume><issue>7</issue><spage>2661</spage><epage>75</epage><pages>2661-75</pages><issn>0270-7306</issn><eissn>1098-5549</eissn><abstract>Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal BTB/POZ repression domain. Here, we show that endogenous HIC1 is SUMOylated in vivo on a phylogenetically conserved lysine, K314, located in the central region which is a second repression domain. K314R mutation does not influence HIC1 subnuclear localization but significantly reduces its transcriptional repression potential, as does the mutation of the other conserved residue in the psiKXE consensus, E316A, or the overexpression of the deSUMOylase SSP3/SENP2. Furthermore, HIC1 is acetylated in vitro by P300/CBP. Strikingly, the K314R mutant is less acetylated than wild-type HIC1, suggesting that this lysine is a target for both SUMOylation and acetylation. We further show that HIC1 transcriptional repression activity is positively controlled by two types of deacetylases, SIRT1 and HDAC4, which increase the deacetylation and SUMOylation, respectively, of K314. Knockdown of endogenous SIRT1 by the transfection of short interfering RNA causes a significant loss of HIC1 SUMOylation. Thus, this dual-deacetylase complex induces either a phosphorylation-dependent acetylation-SUMOylation switch through a psiKXEXXSP motif, as previously shown for MEF2, or a phosphorylation-independent switch through a psiKXEP motif, as shown here for HIC1, since P317A mutation severely impairs HIC1 acetylation. Finally, our results demonstrate that HIC1 is a target of the class III deacetylase SIRT1 and identify a new posttranslational modification step in the P53-HIC1-SIRT1 regulatory loop.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>17283066</pmid><doi>10.1128/mcb.01098-06</doi><tpages>-2585</tpages><orcidid>https://orcid.org/0000-0002-8846-1113</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0270-7306
ispartof Molecular and cellular biology, 2007-04, Vol.27 (7), p.2661-75
issn 0270-7306
1098-5549
language eng
recordid cdi_hal_primary_oai_HAL_hal_00247517v1
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Acetylation
Amino Acid Motifs
Amino Acid Sequence
Animals
Biochemistry, Molecular Biology
Cell Line
Cell Nucleus
Cell Nucleus - metabolism
Conserved Sequence
DNA-Binding Proteins
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Histone Deacetylases
Histone Deacetylases - metabolism
Humans
Kruppel-Like Transcription Factors
Life Sciences
Lysine
Lysine - metabolism
Molecular Sequence Data
Mutation
p300-CBP Transcription Factors
p300-CBP Transcription Factors - metabolism
Phosphorylation
Phylogeny
RNA, Small Interfering
RNA, Small Interfering - genetics
Sirtuin 1
Sirtuins
Sirtuins - genetics
Sirtuins - metabolism
SUMO-1 Protein
SUMO-1 Protein - metabolism
Transcription Factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20acetylation/deacetylation-SUMOylation%20switch%20through%20a%20phylogenetically%20conserved%20psiKXEP%20motif%20in%20the%20tumor%20suppressor%20HIC1%20regulates%20transcriptional%20repression%20activity&rft.jtitle=Molecular%20and%20cellular%20biology&rft.au=Stankovic-Valentin,%20Nicolas&rft.date=2007-04&rft.volume=27&rft.issue=7&rft.spage=2661&rft.epage=75&rft.pages=2661-75&rft.issn=0270-7306&rft.eissn=1098-5549&rft_id=info:doi/10.1128/mcb.01098-06&rft_dat=%3Cproquest_hal_p%3E70260506%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70260506&rft_id=info:pmid/17283066&rfr_iscdi=true