Kinetics of the Coesite–Quartz Transition: Application to the Exhumation of Ultrahigh-Pressure Rocks

The kinetics of the quartz–coesite phase transition has been studied in situ by X-ray diffraction in the 2·1–3·2 GPa, 500–1010°C pressure–temperature range. Analysis of the data within Cahn's model of nucleation and growth at grain boundaries reveals that the prograde and retrograde reactions h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of petrology 2003-04, Vol.44 (4), p.773-788
Hauptverfasser: PERRILLAT, J. P., DANIEL, I., LARDEAUX, J. M., CARDON, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788
container_issue 4
container_start_page 773
container_title Journal of petrology
container_volume 44
creator PERRILLAT, J. P.
DANIEL, I.
LARDEAUX, J. M.
CARDON, H.
description The kinetics of the quartz–coesite phase transition has been studied in situ by X-ray diffraction in the 2·1–3·2 GPa, 500–1010°C pressure–temperature range. Analysis of the data within Cahn's model of nucleation and growth at grain boundaries reveals that the prograde and retrograde reactions have different kinetics. The quartz → coesite transformation is one order of magnitude faster than coesite → quartz. Both reactions are characterized by high nucleation rates, so that the overall reaction kinetics is controlled by crystal growth processes. For the coesite → quartz transformation, growth rates are extrapolated using Turnbull's equation with an activation energy for the transition of 163 ± 23 kJ/mol. This kinetic law is combined with an ‘inclusion in a host’ elastic model to study the contribution of kinetics in coesite preservation. This numerical modelling shows that above 400°C retrograde transformation of coesite to quartz is mainly controlled by the ‘pressure vessel’ effect of the host phase, whereas reaction kinetics is the controlling factor at lower temperatures. The influence of the shape of the P–T path and the exhumation rate upon the retrogression of coesite to quartz are investigated to use the percentage of unretrogressed coesite inclusions to constrain P–T–t paths.
doi_str_mv 10.1093/petrology/44.4.773
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00232756v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>345546021</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-942cd6725ead5d8ea1f62983123f61329ac15e1e75fa45d18cb6b6f1382cb5d13</originalsourceid><addsrcrecordid>eNo9kEtOwzAYhC0EEuVxAVYROxZp_YwTdlUFFFGgoFZCbCw3dYhpWgfbQYUVd-CGnASXoK5-zeib0a8B4ATBLoIZ6dXKW1OZl48epV3a5ZzsgA6iCYwxRWwXdCDEOCaMwH1w4NwrhCj4sAOKG71SXucuMkXkSxUNjHLaq5-v74dGWv8ZTaxcBUeb1XnUr-tK53IjIm_--It12SxbJzRMK29lqV_KeGyVc41V0aPJF-4I7BWycur4_x6C6eXFZDCMR_dX14P-KJaUcx9nFOfzhGOm5JzNUyVRkeAsJQiTIkEEZzJHTCHFWSEpm6M0nyWzpEAkxfksaHIIztreUlaitnop7YcwUothfyQ2XtiBYM6S9w172rK1NW-Ncl68msauwnsCoyzNMpLCAOEWyq1xzqpi24qg2EwvttMLSgUVYfoQituQdl6ttwlpFyLhhDMxfHoWaIDGt3QyEXfkF7WEink</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219899380</pqid></control><display><type>article</type><title>Kinetics of the Coesite–Quartz Transition: Application to the Exhumation of Ultrahigh-Pressure Rocks</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>PERRILLAT, J. P. ; DANIEL, I. ; LARDEAUX, J. M. ; CARDON, H.</creator><creatorcontrib>PERRILLAT, J. P. ; DANIEL, I. ; LARDEAUX, J. M. ; CARDON, H.</creatorcontrib><description>The kinetics of the quartz–coesite phase transition has been studied in situ by X-ray diffraction in the 2·1–3·2 GPa, 500–1010°C pressure–temperature range. Analysis of the data within Cahn's model of nucleation and growth at grain boundaries reveals that the prograde and retrograde reactions have different kinetics. The quartz → coesite transformation is one order of magnitude faster than coesite → quartz. Both reactions are characterized by high nucleation rates, so that the overall reaction kinetics is controlled by crystal growth processes. For the coesite → quartz transformation, growth rates are extrapolated using Turnbull's equation with an activation energy for the transition of 163 ± 23 kJ/mol. This kinetic law is combined with an ‘inclusion in a host’ elastic model to study the contribution of kinetics in coesite preservation. This numerical modelling shows that above 400°C retrograde transformation of coesite to quartz is mainly controlled by the ‘pressure vessel’ effect of the host phase, whereas reaction kinetics is the controlling factor at lower temperatures. The influence of the shape of the P–T path and the exhumation rate upon the retrogression of coesite to quartz are investigated to use the percentage of unretrogressed coesite inclusions to constrain P–T–t paths.</description><identifier>ISSN: 0022-3530</identifier><identifier>ISSN: 1460-2415</identifier><identifier>EISSN: 1460-2415</identifier><identifier>DOI: 10.1093/petrology/44.4.773</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>coesite ; kinetics ; P–T–t paths ; quartz ; ultrahigh-pressure metamorphism</subject><ispartof>Journal of petrology, 2003-04, Vol.44 (4), p.773-788</ispartof><rights>Copyright Oxford University Press(England) Apr 2003</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-942cd6725ead5d8ea1f62983123f61329ac15e1e75fa45d18cb6b6f1382cb5d13</citedby><orcidid>0000-0002-1448-7919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00232756$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>PERRILLAT, J. P.</creatorcontrib><creatorcontrib>DANIEL, I.</creatorcontrib><creatorcontrib>LARDEAUX, J. M.</creatorcontrib><creatorcontrib>CARDON, H.</creatorcontrib><title>Kinetics of the Coesite–Quartz Transition: Application to the Exhumation of Ultrahigh-Pressure Rocks</title><title>Journal of petrology</title><addtitle>J. Petrology</addtitle><description>The kinetics of the quartz–coesite phase transition has been studied in situ by X-ray diffraction in the 2·1–3·2 GPa, 500–1010°C pressure–temperature range. Analysis of the data within Cahn's model of nucleation and growth at grain boundaries reveals that the prograde and retrograde reactions have different kinetics. The quartz → coesite transformation is one order of magnitude faster than coesite → quartz. Both reactions are characterized by high nucleation rates, so that the overall reaction kinetics is controlled by crystal growth processes. For the coesite → quartz transformation, growth rates are extrapolated using Turnbull's equation with an activation energy for the transition of 163 ± 23 kJ/mol. This kinetic law is combined with an ‘inclusion in a host’ elastic model to study the contribution of kinetics in coesite preservation. This numerical modelling shows that above 400°C retrograde transformation of coesite to quartz is mainly controlled by the ‘pressure vessel’ effect of the host phase, whereas reaction kinetics is the controlling factor at lower temperatures. The influence of the shape of the P–T path and the exhumation rate upon the retrogression of coesite to quartz are investigated to use the percentage of unretrogressed coesite inclusions to constrain P–T–t paths.</description><subject>coesite</subject><subject>kinetics</subject><subject>P–T–t paths</subject><subject>quartz</subject><subject>ultrahigh-pressure metamorphism</subject><issn>0022-3530</issn><issn>1460-2415</issn><issn>1460-2415</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAYhC0EEuVxAVYROxZp_YwTdlUFFFGgoFZCbCw3dYhpWgfbQYUVd-CGnASXoK5-zeib0a8B4ATBLoIZ6dXKW1OZl48epV3a5ZzsgA6iCYwxRWwXdCDEOCaMwH1w4NwrhCj4sAOKG71SXucuMkXkSxUNjHLaq5-v74dGWv8ZTaxcBUeb1XnUr-tK53IjIm_--It12SxbJzRMK29lqV_KeGyVc41V0aPJF-4I7BWycur4_x6C6eXFZDCMR_dX14P-KJaUcx9nFOfzhGOm5JzNUyVRkeAsJQiTIkEEZzJHTCHFWSEpm6M0nyWzpEAkxfksaHIIztreUlaitnop7YcwUothfyQ2XtiBYM6S9w172rK1NW-Ncl68msauwnsCoyzNMpLCAOEWyq1xzqpi24qg2EwvttMLSgUVYfoQituQdl6ttwlpFyLhhDMxfHoWaIDGt3QyEXfkF7WEink</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>PERRILLAT, J. P.</creator><creator>DANIEL, I.</creator><creator>LARDEAUX, J. M.</creator><creator>CARDON, H.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JG9</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1448-7919</orcidid></search><sort><creationdate>20030401</creationdate><title>Kinetics of the Coesite–Quartz Transition: Application to the Exhumation of Ultrahigh-Pressure Rocks</title><author>PERRILLAT, J. P. ; DANIEL, I. ; LARDEAUX, J. M. ; CARDON, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-942cd6725ead5d8ea1f62983123f61329ac15e1e75fa45d18cb6b6f1382cb5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>coesite</topic><topic>kinetics</topic><topic>P–T–t paths</topic><topic>quartz</topic><topic>ultrahigh-pressure metamorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PERRILLAT, J. P.</creatorcontrib><creatorcontrib>DANIEL, I.</creatorcontrib><creatorcontrib>LARDEAUX, J. M.</creatorcontrib><creatorcontrib>CARDON, H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PERRILLAT, J. P.</au><au>DANIEL, I.</au><au>LARDEAUX, J. M.</au><au>CARDON, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of the Coesite–Quartz Transition: Application to the Exhumation of Ultrahigh-Pressure Rocks</atitle><jtitle>Journal of petrology</jtitle><addtitle>J. Petrology</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>44</volume><issue>4</issue><spage>773</spage><epage>788</epage><pages>773-788</pages><issn>0022-3530</issn><issn>1460-2415</issn><eissn>1460-2415</eissn><abstract>The kinetics of the quartz–coesite phase transition has been studied in situ by X-ray diffraction in the 2·1–3·2 GPa, 500–1010°C pressure–temperature range. Analysis of the data within Cahn's model of nucleation and growth at grain boundaries reveals that the prograde and retrograde reactions have different kinetics. The quartz → coesite transformation is one order of magnitude faster than coesite → quartz. Both reactions are characterized by high nucleation rates, so that the overall reaction kinetics is controlled by crystal growth processes. For the coesite → quartz transformation, growth rates are extrapolated using Turnbull's equation with an activation energy for the transition of 163 ± 23 kJ/mol. This kinetic law is combined with an ‘inclusion in a host’ elastic model to study the contribution of kinetics in coesite preservation. This numerical modelling shows that above 400°C retrograde transformation of coesite to quartz is mainly controlled by the ‘pressure vessel’ effect of the host phase, whereas reaction kinetics is the controlling factor at lower temperatures. The influence of the shape of the P–T path and the exhumation rate upon the retrogression of coesite to quartz are investigated to use the percentage of unretrogressed coesite inclusions to constrain P–T–t paths.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/petrology/44.4.773</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1448-7919</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3530
ispartof Journal of petrology, 2003-04, Vol.44 (4), p.773-788
issn 0022-3530
1460-2415
1460-2415
language eng
recordid cdi_hal_primary_oai_HAL_hal_00232756v1
source Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects coesite
kinetics
P–T–t paths
quartz
ultrahigh-pressure metamorphism
title Kinetics of the Coesite–Quartz Transition: Application to the Exhumation of Ultrahigh-Pressure Rocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20the%20Coesite%E2%80%93Quartz%20Transition:%20Application%20to%20the%20Exhumation%20of%20Ultrahigh-Pressure%20Rocks&rft.jtitle=Journal%20of%20petrology&rft.au=PERRILLAT,%20J.%20P.&rft.date=2003-04-01&rft.volume=44&rft.issue=4&rft.spage=773&rft.epage=788&rft.pages=773-788&rft.issn=0022-3530&rft.eissn=1460-2415&rft_id=info:doi/10.1093/petrology/44.4.773&rft_dat=%3Cproquest_hal_p%3E345546021%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219899380&rft_id=info:pmid/&rfr_iscdi=true