Modeling of Laminar Flows in Rough-Wall Microchannels
Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the...
Gespeichert in:
Veröffentlicht in: | Journal of fluids engineering 2006-07, Vol.128 (4), p.734-741 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 741 |
---|---|
container_issue | 4 |
container_start_page | 734 |
container_title | Journal of fluids engineering |
container_volume | 128 |
creator | Bavière, R. Gamrat, G. Favre-Marinet, M. Le Person, S. |
description | Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the range 1–200. The analytical model needs only one constant for most geometrical arrangements. It compares well with the numerical results. Moreover, both models are consistent with experimental data. They show that the rough elements drag is mainly responsible for the pressure drop across the channel in the upper part of the relative roughness range. |
doi_str_mv | 10.1115/1.2201635 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00204663v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28928678</sourcerecordid><originalsourceid>FETCH-LOGICAL-a340t-10a0768222aad9915fb704c6c54955356299c02065c4e39b844db55e6fa7f4ac3</originalsourceid><addsrcrecordid>eNqNkM1LAzEQxYMoWKsHz172ouBha743OZZirdAiiKK3ME2z7Zbspm66iv-9KS169TQw83sz8x5ClwQPCCHijgwoxUQycYR6RFCVa0zej1EPY63yNKKn6CzGNcaEMa56SMzCwvmqWWahzKZQVw202diHr5hVTfYcuuUqfwPvs1ll22BX0DTOx3N0UoKP7uJQ--h1fP8ymuTTp4fH0XCaA-N4mxMMuJCKUgqw0JqIcl5gbqUVXAvBhKRaW0yxFJY7pueK88VcCCdLKEoOlvXR7X7vCrzZtFUN7bcJUJnJcGp2PZzUXEr2SRJ7s2c3bfjoXNyauorWeQ-NC100VGmqZKH-ATLFacH-rifnMbau_H2BYLNL2xBzSDux14elEC34soXGVvFPoGRyzHnirvYcxNqZdejaJgVokgepJfsBQumDlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28384273</pqid></control><display><type>article</type><title>Modeling of Laminar Flows in Rough-Wall Microchannels</title><source>ASME Transactions Journals (Current)</source><creator>Bavière, R. ; Gamrat, G. ; Favre-Marinet, M. ; Le Person, S.</creator><creatorcontrib>Bavière, R. ; Gamrat, G. ; Favre-Marinet, M. ; Le Person, S.</creatorcontrib><description>Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the range 1–200. The analytical model needs only one constant for most geometrical arrangements. It compares well with the numerical results. Moreover, both models are consistent with experimental data. They show that the rough elements drag is mainly responsible for the pressure drop across the channel in the upper part of the relative roughness range.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.2201635</identifier><identifier>CODEN: JFEGA4</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Analytical biochemistry: general aspects, technics, instrumentation ; Analytical, structural and metabolic biochemistry ; Applied fluid mechanics ; Applied sciences ; Biological and medical sciences ; Design. Technologies. Operation analysis. Testing ; Electronics ; Engineering Sciences ; Exact sciences and technology ; Fluid dynamics ; Fluid mechanics ; Fluidics ; Fluids mechanics ; Fundamental and applied biological sciences. Psychology ; Fundamental areas of phenomenology (including applications) ; Integrated circuits ; Mechanics ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Journal of fluids engineering, 2006-07, Vol.128 (4), p.734-741</ispartof><rights>2007 INIST-CNRS</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a340t-10a0768222aad9915fb704c6c54955356299c02065c4e39b844db55e6fa7f4ac3</citedby><cites>FETCH-LOGICAL-a340t-10a0768222aad9915fb704c6c54955356299c02065c4e39b844db55e6fa7f4ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18695544$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00204663$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bavière, R.</creatorcontrib><creatorcontrib>Gamrat, G.</creatorcontrib><creatorcontrib>Favre-Marinet, M.</creatorcontrib><creatorcontrib>Le Person, S.</creatorcontrib><title>Modeling of Laminar Flows in Rough-Wall Microchannels</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the range 1–200. The analytical model needs only one constant for most geometrical arrangements. It compares well with the numerical results. Moreover, both models are consistent with experimental data. They show that the rough elements drag is mainly responsible for the pressure drop across the channel in the upper part of the relative roughness range.</description><subject>Analytical biochemistry: general aspects, technics, instrumentation</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Applied fluid mechanics</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluidics</subject><subject>Fluids mechanics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integrated circuits</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkM1LAzEQxYMoWKsHz172ouBha743OZZirdAiiKK3ME2z7Zbspm66iv-9KS169TQw83sz8x5ClwQPCCHijgwoxUQycYR6RFCVa0zej1EPY63yNKKn6CzGNcaEMa56SMzCwvmqWWahzKZQVw202diHr5hVTfYcuuUqfwPvs1ll22BX0DTOx3N0UoKP7uJQ--h1fP8ymuTTp4fH0XCaA-N4mxMMuJCKUgqw0JqIcl5gbqUVXAvBhKRaW0yxFJY7pueK88VcCCdLKEoOlvXR7X7vCrzZtFUN7bcJUJnJcGp2PZzUXEr2SRJ7s2c3bfjoXNyauorWeQ-NC100VGmqZKH-ATLFacH-rifnMbau_H2BYLNL2xBzSDux14elEC34soXGVvFPoGRyzHnirvYcxNqZdejaJgVokgepJfsBQumDlw</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Bavière, R.</creator><creator>Gamrat, G.</creator><creator>Favre-Marinet, M.</creator><creator>Le Person, S.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20060701</creationdate><title>Modeling of Laminar Flows in Rough-Wall Microchannels</title><author>Bavière, R. ; Gamrat, G. ; Favre-Marinet, M. ; Le Person, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a340t-10a0768222aad9915fb704c6c54955356299c02065c4e39b844db55e6fa7f4ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical biochemistry: general aspects, technics, instrumentation</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Applied fluid mechanics</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluidics</topic><topic>Fluids mechanics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integrated circuits</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bavière, R.</creatorcontrib><creatorcontrib>Gamrat, G.</creatorcontrib><creatorcontrib>Favre-Marinet, M.</creatorcontrib><creatorcontrib>Le Person, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bavière, R.</au><au>Gamrat, G.</au><au>Favre-Marinet, M.</au><au>Le Person, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Laminar Flows in Rough-Wall Microchannels</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>2006-07-01</date><risdate>2006</risdate><volume>128</volume><issue>4</issue><spage>734</spage><epage>741</epage><pages>734-741</pages><issn>0098-2202</issn><eissn>1528-901X</eissn><coden>JFEGA4</coden><abstract>Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the range 1–200. The analytical model needs only one constant for most geometrical arrangements. It compares well with the numerical results. Moreover, both models are consistent with experimental data. They show that the rough elements drag is mainly responsible for the pressure drop across the channel in the upper part of the relative roughness range.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2201635</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-2202 |
ispartof | Journal of fluids engineering, 2006-07, Vol.128 (4), p.734-741 |
issn | 0098-2202 1528-901X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00204663v1 |
source | ASME Transactions Journals (Current) |
subjects | Analytical biochemistry: general aspects, technics, instrumentation Analytical, structural and metabolic biochemistry Applied fluid mechanics Applied sciences Biological and medical sciences Design. Technologies. Operation analysis. Testing Electronics Engineering Sciences Exact sciences and technology Fluid dynamics Fluid mechanics Fluidics Fluids mechanics Fundamental and applied biological sciences. Psychology Fundamental areas of phenomenology (including applications) Integrated circuits Mechanics Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | Modeling of Laminar Flows in Rough-Wall Microchannels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Laminar%20Flows%20in%20Rough-Wall%20Microchannels&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Bavi%C3%A8re,%20R.&rft.date=2006-07-01&rft.volume=128&rft.issue=4&rft.spage=734&rft.epage=741&rft.pages=734-741&rft.issn=0098-2202&rft.eissn=1528-901X&rft.coden=JFEGA4&rft_id=info:doi/10.1115/1.2201635&rft_dat=%3Cproquest_hal_p%3E28928678%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28384273&rft_id=info:pmid/&rfr_iscdi=true |