Modeling of Laminar Flows in Rough-Wall Microchannels

Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2006-07, Vol.128 (4), p.734-741
Hauptverfasser: Bavière, R., Gamrat, G., Favre-Marinet, M., Le Person, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 741
container_issue 4
container_start_page 734
container_title Journal of fluids engineering
container_volume 128
creator Bavière, R.
Gamrat, G.
Favre-Marinet, M.
Le Person, S.
description Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the range 1–200. The analytical model needs only one constant for most geometrical arrangements. It compares well with the numerical results. Moreover, both models are consistent with experimental data. They show that the rough elements drag is mainly responsible for the pressure drop across the channel in the upper part of the relative roughness range.
doi_str_mv 10.1115/1.2201635
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00204663v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28928678</sourcerecordid><originalsourceid>FETCH-LOGICAL-a340t-10a0768222aad9915fb704c6c54955356299c02065c4e39b844db55e6fa7f4ac3</originalsourceid><addsrcrecordid>eNqNkM1LAzEQxYMoWKsHz172ouBha743OZZirdAiiKK3ME2z7Zbspm66iv-9KS169TQw83sz8x5ClwQPCCHijgwoxUQycYR6RFCVa0zej1EPY63yNKKn6CzGNcaEMa56SMzCwvmqWWahzKZQVw202diHr5hVTfYcuuUqfwPvs1ll22BX0DTOx3N0UoKP7uJQ--h1fP8ymuTTp4fH0XCaA-N4mxMMuJCKUgqw0JqIcl5gbqUVXAvBhKRaW0yxFJY7pueK88VcCCdLKEoOlvXR7X7vCrzZtFUN7bcJUJnJcGp2PZzUXEr2SRJ7s2c3bfjoXNyauorWeQ-NC100VGmqZKH-ATLFacH-rifnMbau_H2BYLNL2xBzSDux14elEC34soXGVvFPoGRyzHnirvYcxNqZdejaJgVokgepJfsBQumDlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28384273</pqid></control><display><type>article</type><title>Modeling of Laminar Flows in Rough-Wall Microchannels</title><source>ASME Transactions Journals (Current)</source><creator>Bavière, R. ; Gamrat, G. ; Favre-Marinet, M. ; Le Person, S.</creator><creatorcontrib>Bavière, R. ; Gamrat, G. ; Favre-Marinet, M. ; Le Person, S.</creatorcontrib><description>Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the range 1–200. The analytical model needs only one constant for most geometrical arrangements. It compares well with the numerical results. Moreover, both models are consistent with experimental data. They show that the rough elements drag is mainly responsible for the pressure drop across the channel in the upper part of the relative roughness range.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.2201635</identifier><identifier>CODEN: JFEGA4</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Analytical biochemistry: general aspects, technics, instrumentation ; Analytical, structural and metabolic biochemistry ; Applied fluid mechanics ; Applied sciences ; Biological and medical sciences ; Design. Technologies. Operation analysis. Testing ; Electronics ; Engineering Sciences ; Exact sciences and technology ; Fluid dynamics ; Fluid mechanics ; Fluidics ; Fluids mechanics ; Fundamental and applied biological sciences. Psychology ; Fundamental areas of phenomenology (including applications) ; Integrated circuits ; Mechanics ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Journal of fluids engineering, 2006-07, Vol.128 (4), p.734-741</ispartof><rights>2007 INIST-CNRS</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a340t-10a0768222aad9915fb704c6c54955356299c02065c4e39b844db55e6fa7f4ac3</citedby><cites>FETCH-LOGICAL-a340t-10a0768222aad9915fb704c6c54955356299c02065c4e39b844db55e6fa7f4ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18695544$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00204663$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bavière, R.</creatorcontrib><creatorcontrib>Gamrat, G.</creatorcontrib><creatorcontrib>Favre-Marinet, M.</creatorcontrib><creatorcontrib>Le Person, S.</creatorcontrib><title>Modeling of Laminar Flows in Rough-Wall Microchannels</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the range 1–200. The analytical model needs only one constant for most geometrical arrangements. It compares well with the numerical results. Moreover, both models are consistent with experimental data. They show that the rough elements drag is mainly responsible for the pressure drop across the channel in the upper part of the relative roughness range.</description><subject>Analytical biochemistry: general aspects, technics, instrumentation</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Applied fluid mechanics</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluidics</subject><subject>Fluids mechanics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integrated circuits</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkM1LAzEQxYMoWKsHz172ouBha743OZZirdAiiKK3ME2z7Zbspm66iv-9KS169TQw83sz8x5ClwQPCCHijgwoxUQycYR6RFCVa0zej1EPY63yNKKn6CzGNcaEMa56SMzCwvmqWWahzKZQVw202diHr5hVTfYcuuUqfwPvs1ll22BX0DTOx3N0UoKP7uJQ--h1fP8ymuTTp4fH0XCaA-N4mxMMuJCKUgqw0JqIcl5gbqUVXAvBhKRaW0yxFJY7pueK88VcCCdLKEoOlvXR7X7vCrzZtFUN7bcJUJnJcGp2PZzUXEr2SRJ7s2c3bfjoXNyauorWeQ-NC100VGmqZKH-ATLFacH-rifnMbau_H2BYLNL2xBzSDux14elEC34soXGVvFPoGRyzHnirvYcxNqZdejaJgVokgepJfsBQumDlw</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Bavière, R.</creator><creator>Gamrat, G.</creator><creator>Favre-Marinet, M.</creator><creator>Le Person, S.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20060701</creationdate><title>Modeling of Laminar Flows in Rough-Wall Microchannels</title><author>Bavière, R. ; Gamrat, G. ; Favre-Marinet, M. ; Le Person, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a340t-10a0768222aad9915fb704c6c54955356299c02065c4e39b844db55e6fa7f4ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical biochemistry: general aspects, technics, instrumentation</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Applied fluid mechanics</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluidics</topic><topic>Fluids mechanics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integrated circuits</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bavière, R.</creatorcontrib><creatorcontrib>Gamrat, G.</creatorcontrib><creatorcontrib>Favre-Marinet, M.</creatorcontrib><creatorcontrib>Le Person, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bavière, R.</au><au>Gamrat, G.</au><au>Favre-Marinet, M.</au><au>Le Person, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Laminar Flows in Rough-Wall Microchannels</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>2006-07-01</date><risdate>2006</risdate><volume>128</volume><issue>4</issue><spage>734</spage><epage>741</epage><pages>734-741</pages><issn>0098-2202</issn><eissn>1528-901X</eissn><coden>JFEGA4</coden><abstract>Numerical modeling and analytical approach were used to compute laminar flows in rough-wall microchannels. Both models considered the same arrangements of rectangular prism rough elements in periodical arrays. The numerical results confirmed that the flow is independent of the Reynolds number in the range 1–200. The analytical model needs only one constant for most geometrical arrangements. It compares well with the numerical results. Moreover, both models are consistent with experimental data. They show that the rough elements drag is mainly responsible for the pressure drop across the channel in the upper part of the relative roughness range.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2201635</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-2202
ispartof Journal of fluids engineering, 2006-07, Vol.128 (4), p.734-741
issn 0098-2202
1528-901X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00204663v1
source ASME Transactions Journals (Current)
subjects Analytical biochemistry: general aspects, technics, instrumentation
Analytical, structural and metabolic biochemistry
Applied fluid mechanics
Applied sciences
Biological and medical sciences
Design. Technologies. Operation analysis. Testing
Electronics
Engineering Sciences
Exact sciences and technology
Fluid dynamics
Fluid mechanics
Fluidics
Fluids mechanics
Fundamental and applied biological sciences. Psychology
Fundamental areas of phenomenology (including applications)
Integrated circuits
Mechanics
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Modeling of Laminar Flows in Rough-Wall Microchannels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Laminar%20Flows%20in%20Rough-Wall%20Microchannels&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Bavi%C3%A8re,%20R.&rft.date=2006-07-01&rft.volume=128&rft.issue=4&rft.spage=734&rft.epage=741&rft.pages=734-741&rft.issn=0098-2202&rft.eissn=1528-901X&rft.coden=JFEGA4&rft_id=info:doi/10.1115/1.2201635&rft_dat=%3Cproquest_hal_p%3E28928678%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28384273&rft_id=info:pmid/&rfr_iscdi=true