Friedreich ataxia: the oxidative stress paradox
Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron–sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe–S cluster (ISC) and heme biosynthesis. In...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2005-02, Vol.14 (4), p.463-474 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 474 |
---|---|
container_issue | 4 |
container_start_page | 463 |
container_title | Human molecular genetics |
container_volume | 14 |
creator | Seznec, Hervé Simon, Delphine Bouton, Cécile Reutenauer, Laurence Hertzog, Ariane Golik, Pawel Procaccio, Vincent Patel, Manisha Drapier, Jean-Claude Koenig, Michel Puccio, Hélène |
description | Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron–sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe–S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage. |
doi_str_mv | 10.1093/hmg/ddi042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00187760v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>793978301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-5400126f186b5d305a32519c5c5236dceec342c5566fd810d103e4bc1eb1d50f3</originalsourceid><addsrcrecordid>eNqF0dGKEzEUBuAgiltXb3wAGQQFhbHnJDmZiXdLca1QEERx8SakScZmnXZqMl3q25tlyi5441Xg5ONPDj9jzxHeIWgx32x_zr2PIPkDNkOpoObQiodsBlrJWmlQZ-xJztcAqKRoHrMzJIXUNDhj88sUg08huk1lR3uM9n01bkI1HKO3Y7wJVR5TyLna22T9cHzKHnW2z-HZ6Txn3y4_fF0s69Xnj58WF6vaETRjTbI8xlWHrVqTF0BWcELtyBEXyrsQnJDcESnV-RbBI4gg1w7DGj1BJ87Zmyl3Y3uzT3Fr0x8z2GiWFytzOyv5bdMouMFiX092n4bfh5BHs43Zhb63uzAcslGNBC1b-i_kQLJFLQt8-Q-8Hg5pVxY2HJFrIqkLejshl4acU-ju_olgbosxpRgzFVPwi1PiYb0N_p6emijg1QnY7GzfJbtzMd87RcQLLa6eXMxjON7d2_Sr7CkaMsurH0Z_Xyyu4EtjluIvEBmiJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211295549</pqid></control><display><type>article</type><title>Friedreich ataxia: the oxidative stress paradox</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Seznec, Hervé ; Simon, Delphine ; Bouton, Cécile ; Reutenauer, Laurence ; Hertzog, Ariane ; Golik, Pawel ; Procaccio, Vincent ; Patel, Manisha ; Drapier, Jean-Claude ; Koenig, Michel ; Puccio, Hélène</creator><creatorcontrib>Seznec, Hervé ; Simon, Delphine ; Bouton, Cécile ; Reutenauer, Laurence ; Hertzog, Ariane ; Golik, Pawel ; Procaccio, Vincent ; Patel, Manisha ; Drapier, Jean-Claude ; Koenig, Michel ; Puccio, Hélène</creatorcontrib><description>Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron–sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe–S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddi042</identifier><identifier>PMID: 15615771</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Animals ; Binding Sites ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Cardiomyopathies ; Cardiomyopathies - metabolism ; Cardiomyopathies - pathology ; Cytosol ; Cytosol - enzymology ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Free Radical Scavengers ; Free Radical Scavengers - metabolism ; Friedreich Ataxia ; Friedreich Ataxia - metabolism ; Friedreich Ataxia - pathology ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Genetics of eukaryotes. Biological and molecular evolution ; Iron ; Iron - metabolism ; Iron Regulatory Protein 1 ; Iron Regulatory Protein 1 - metabolism ; Iron-Sulfur Proteins ; Iron-Sulfur Proteins - metabolism ; Life Sciences ; Manganese ; Manganese - metabolism ; Medical sciences ; Metalloporphyrins ; Metalloporphyrins - metabolism ; Mice ; Mice, Knockout ; Microarray Analysis ; Mitochondria ; Mitochondria - physiology ; Molecular and cellular biology ; Molecular biology ; Neurology ; Neurons ; Oxidation-Reduction ; Oxidative Stress ; RNA ; RNA - metabolism ; Superoxide Dismutase ; Superoxide Dismutase - metabolism</subject><ispartof>Human molecular genetics, 2005-02, Vol.14 (4), p.463-474</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Feb 15, 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-5400126f186b5d305a32519c5c5236dceec342c5566fd810d103e4bc1eb1d50f3</citedby><cites>FETCH-LOGICAL-c507t-5400126f186b5d305a32519c5c5236dceec342c5566fd810d103e4bc1eb1d50f3</cites><orcidid>0000-0002-2430-7328 ; 0000-0001-6180-8925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16552615$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15615771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00187760$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Seznec, Hervé</creatorcontrib><creatorcontrib>Simon, Delphine</creatorcontrib><creatorcontrib>Bouton, Cécile</creatorcontrib><creatorcontrib>Reutenauer, Laurence</creatorcontrib><creatorcontrib>Hertzog, Ariane</creatorcontrib><creatorcontrib>Golik, Pawel</creatorcontrib><creatorcontrib>Procaccio, Vincent</creatorcontrib><creatorcontrib>Patel, Manisha</creatorcontrib><creatorcontrib>Drapier, Jean-Claude</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Puccio, Hélène</creatorcontrib><title>Friedreich ataxia: the oxidative stress paradox</title><title>Human molecular genetics</title><addtitle>Hum. Mol. Genet</addtitle><description>Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron–sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe–S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Cardiomyopathies</subject><subject>Cardiomyopathies - metabolism</subject><subject>Cardiomyopathies - pathology</subject><subject>Cytosol</subject><subject>Cytosol - enzymology</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Free Radical Scavengers</subject><subject>Free Radical Scavengers - metabolism</subject><subject>Friedreich Ataxia</subject><subject>Friedreich Ataxia - metabolism</subject><subject>Friedreich Ataxia - pathology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron Regulatory Protein 1</subject><subject>Iron Regulatory Protein 1 - metabolism</subject><subject>Iron-Sulfur Proteins</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Manganese</subject><subject>Manganese - metabolism</subject><subject>Medical sciences</subject><subject>Metalloporphyrins</subject><subject>Metalloporphyrins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microarray Analysis</subject><subject>Mitochondria</subject><subject>Mitochondria - physiology</subject><subject>Molecular and cellular biology</subject><subject>Molecular biology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>Superoxide Dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0dGKEzEUBuAgiltXb3wAGQQFhbHnJDmZiXdLca1QEERx8SakScZmnXZqMl3q25tlyi5441Xg5ONPDj9jzxHeIWgx32x_zr2PIPkDNkOpoObQiodsBlrJWmlQZ-xJztcAqKRoHrMzJIXUNDhj88sUg08huk1lR3uM9n01bkI1HKO3Y7wJVR5TyLna22T9cHzKHnW2z-HZ6Txn3y4_fF0s69Xnj58WF6vaETRjTbI8xlWHrVqTF0BWcELtyBEXyrsQnJDcESnV-RbBI4gg1w7DGj1BJ87Zmyl3Y3uzT3Fr0x8z2GiWFytzOyv5bdMouMFiX092n4bfh5BHs43Zhb63uzAcslGNBC1b-i_kQLJFLQt8-Q-8Hg5pVxY2HJFrIqkLejshl4acU-ju_olgbosxpRgzFVPwi1PiYb0N_p6emijg1QnY7GzfJbtzMd87RcQLLa6eXMxjON7d2_Sr7CkaMsurH0Z_Xyyu4EtjluIvEBmiJA</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>Seznec, Hervé</creator><creator>Simon, Delphine</creator><creator>Bouton, Cécile</creator><creator>Reutenauer, Laurence</creator><creator>Hertzog, Ariane</creator><creator>Golik, Pawel</creator><creator>Procaccio, Vincent</creator><creator>Patel, Manisha</creator><creator>Drapier, Jean-Claude</creator><creator>Koenig, Michel</creator><creator>Puccio, Hélène</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2430-7328</orcidid><orcidid>https://orcid.org/0000-0001-6180-8925</orcidid></search><sort><creationdate>20050215</creationdate><title>Friedreich ataxia: the oxidative stress paradox</title><author>Seznec, Hervé ; Simon, Delphine ; Bouton, Cécile ; Reutenauer, Laurence ; Hertzog, Ariane ; Golik, Pawel ; Procaccio, Vincent ; Patel, Manisha ; Drapier, Jean-Claude ; Koenig, Michel ; Puccio, Hélène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-5400126f186b5d305a32519c5c5236dceec342c5566fd810d103e4bc1eb1d50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Cardiomyopathies</topic><topic>Cardiomyopathies - metabolism</topic><topic>Cardiomyopathies - pathology</topic><topic>Cytosol</topic><topic>Cytosol - enzymology</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Free Radical Scavengers</topic><topic>Free Radical Scavengers - metabolism</topic><topic>Friedreich Ataxia</topic><topic>Friedreich Ataxia - metabolism</topic><topic>Friedreich Ataxia - pathology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron Regulatory Protein 1</topic><topic>Iron Regulatory Protein 1 - metabolism</topic><topic>Iron-Sulfur Proteins</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Manganese</topic><topic>Manganese - metabolism</topic><topic>Medical sciences</topic><topic>Metalloporphyrins</topic><topic>Metalloporphyrins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microarray Analysis</topic><topic>Mitochondria</topic><topic>Mitochondria - physiology</topic><topic>Molecular and cellular biology</topic><topic>Molecular biology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>Superoxide Dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seznec, Hervé</creatorcontrib><creatorcontrib>Simon, Delphine</creatorcontrib><creatorcontrib>Bouton, Cécile</creatorcontrib><creatorcontrib>Reutenauer, Laurence</creatorcontrib><creatorcontrib>Hertzog, Ariane</creatorcontrib><creatorcontrib>Golik, Pawel</creatorcontrib><creatorcontrib>Procaccio, Vincent</creatorcontrib><creatorcontrib>Patel, Manisha</creatorcontrib><creatorcontrib>Drapier, Jean-Claude</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Puccio, Hélène</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seznec, Hervé</au><au>Simon, Delphine</au><au>Bouton, Cécile</au><au>Reutenauer, Laurence</au><au>Hertzog, Ariane</au><au>Golik, Pawel</au><au>Procaccio, Vincent</au><au>Patel, Manisha</au><au>Drapier, Jean-Claude</au><au>Koenig, Michel</au><au>Puccio, Hélène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Friedreich ataxia: the oxidative stress paradox</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum. Mol. Genet</addtitle><date>2005-02-15</date><risdate>2005</risdate><volume>14</volume><issue>4</issue><spage>463</spage><epage>474</epage><pages>463-474</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron–sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe–S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15615771</pmid><doi>10.1093/hmg/ddi042</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2430-7328</orcidid><orcidid>https://orcid.org/0000-0001-6180-8925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2005-02, Vol.14 (4), p.463-474 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00187760v1 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Animals Binding Sites Biochemistry, Molecular Biology Biological and medical sciences Cardiomyopathies Cardiomyopathies - metabolism Cardiomyopathies - pathology Cytosol Cytosol - enzymology Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Free Radical Scavengers Free Radical Scavengers - metabolism Friedreich Ataxia Friedreich Ataxia - metabolism Friedreich Ataxia - pathology Fundamental and applied biological sciences. Psychology Gene Expression Profiling Genetics of eukaryotes. Biological and molecular evolution Iron Iron - metabolism Iron Regulatory Protein 1 Iron Regulatory Protein 1 - metabolism Iron-Sulfur Proteins Iron-Sulfur Proteins - metabolism Life Sciences Manganese Manganese - metabolism Medical sciences Metalloporphyrins Metalloporphyrins - metabolism Mice Mice, Knockout Microarray Analysis Mitochondria Mitochondria - physiology Molecular and cellular biology Molecular biology Neurology Neurons Oxidation-Reduction Oxidative Stress RNA RNA - metabolism Superoxide Dismutase Superoxide Dismutase - metabolism |
title | Friedreich ataxia: the oxidative stress paradox |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Friedreich%20ataxia:%20the%20oxidative%20stress%20paradox&rft.jtitle=Human%20molecular%20genetics&rft.au=Seznec,%20Herve%CC%81&rft.date=2005-02-15&rft.volume=14&rft.issue=4&rft.spage=463&rft.epage=474&rft.pages=463-474&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/ddi042&rft_dat=%3Cproquest_hal_p%3E793978301%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211295549&rft_id=info:pmid/15615771&rfr_iscdi=true |