Friedreich ataxia: the oxidative stress paradox

Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron–sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe–S cluster (ISC) and heme biosynthesis. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2005-02, Vol.14 (4), p.463-474
Hauptverfasser: Seznec, Hervé, Simon, Delphine, Bouton, Cécile, Reutenauer, Laurence, Hertzog, Ariane, Golik, Pawel, Procaccio, Vincent, Patel, Manisha, Drapier, Jean-Claude, Koenig, Michel, Puccio, Hélène
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 4
container_start_page 463
container_title Human molecular genetics
container_volume 14
creator Seznec, Hervé
Simon, Delphine
Bouton, Cécile
Reutenauer, Laurence
Hertzog, Ariane
Golik, Pawel
Procaccio, Vincent
Patel, Manisha
Drapier, Jean-Claude
Koenig, Michel
Puccio, Hélène
description Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron–sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe–S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage.
doi_str_mv 10.1093/hmg/ddi042
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00187760v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>793978301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-5400126f186b5d305a32519c5c5236dceec342c5566fd810d103e4bc1eb1d50f3</originalsourceid><addsrcrecordid>eNqF0dGKEzEUBuAgiltXb3wAGQQFhbHnJDmZiXdLca1QEERx8SakScZmnXZqMl3q25tlyi5441Xg5ONPDj9jzxHeIWgx32x_zr2PIPkDNkOpoObQiodsBlrJWmlQZ-xJztcAqKRoHrMzJIXUNDhj88sUg08huk1lR3uM9n01bkI1HKO3Y7wJVR5TyLna22T9cHzKHnW2z-HZ6Txn3y4_fF0s69Xnj58WF6vaETRjTbI8xlWHrVqTF0BWcELtyBEXyrsQnJDcESnV-RbBI4gg1w7DGj1BJ87Zmyl3Y3uzT3Fr0x8z2GiWFytzOyv5bdMouMFiX092n4bfh5BHs43Zhb63uzAcslGNBC1b-i_kQLJFLQt8-Q-8Hg5pVxY2HJFrIqkLejshl4acU-ju_olgbosxpRgzFVPwi1PiYb0N_p6emijg1QnY7GzfJbtzMd87RcQLLa6eXMxjON7d2_Sr7CkaMsurH0Z_Xyyu4EtjluIvEBmiJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211295549</pqid></control><display><type>article</type><title>Friedreich ataxia: the oxidative stress paradox</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Seznec, Hervé ; Simon, Delphine ; Bouton, Cécile ; Reutenauer, Laurence ; Hertzog, Ariane ; Golik, Pawel ; Procaccio, Vincent ; Patel, Manisha ; Drapier, Jean-Claude ; Koenig, Michel ; Puccio, Hélène</creator><creatorcontrib>Seznec, Hervé ; Simon, Delphine ; Bouton, Cécile ; Reutenauer, Laurence ; Hertzog, Ariane ; Golik, Pawel ; Procaccio, Vincent ; Patel, Manisha ; Drapier, Jean-Claude ; Koenig, Michel ; Puccio, Hélène</creatorcontrib><description>Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron–sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe–S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddi042</identifier><identifier>PMID: 15615771</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Animals ; Binding Sites ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Cardiomyopathies ; Cardiomyopathies - metabolism ; Cardiomyopathies - pathology ; Cytosol ; Cytosol - enzymology ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Free Radical Scavengers ; Free Radical Scavengers - metabolism ; Friedreich Ataxia ; Friedreich Ataxia - metabolism ; Friedreich Ataxia - pathology ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Genetics of eukaryotes. Biological and molecular evolution ; Iron ; Iron - metabolism ; Iron Regulatory Protein 1 ; Iron Regulatory Protein 1 - metabolism ; Iron-Sulfur Proteins ; Iron-Sulfur Proteins - metabolism ; Life Sciences ; Manganese ; Manganese - metabolism ; Medical sciences ; Metalloporphyrins ; Metalloporphyrins - metabolism ; Mice ; Mice, Knockout ; Microarray Analysis ; Mitochondria ; Mitochondria - physiology ; Molecular and cellular biology ; Molecular biology ; Neurology ; Neurons ; Oxidation-Reduction ; Oxidative Stress ; RNA ; RNA - metabolism ; Superoxide Dismutase ; Superoxide Dismutase - metabolism</subject><ispartof>Human molecular genetics, 2005-02, Vol.14 (4), p.463-474</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Feb 15, 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-5400126f186b5d305a32519c5c5236dceec342c5566fd810d103e4bc1eb1d50f3</citedby><cites>FETCH-LOGICAL-c507t-5400126f186b5d305a32519c5c5236dceec342c5566fd810d103e4bc1eb1d50f3</cites><orcidid>0000-0002-2430-7328 ; 0000-0001-6180-8925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16552615$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15615771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00187760$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Seznec, Hervé</creatorcontrib><creatorcontrib>Simon, Delphine</creatorcontrib><creatorcontrib>Bouton, Cécile</creatorcontrib><creatorcontrib>Reutenauer, Laurence</creatorcontrib><creatorcontrib>Hertzog, Ariane</creatorcontrib><creatorcontrib>Golik, Pawel</creatorcontrib><creatorcontrib>Procaccio, Vincent</creatorcontrib><creatorcontrib>Patel, Manisha</creatorcontrib><creatorcontrib>Drapier, Jean-Claude</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Puccio, Hélène</creatorcontrib><title>Friedreich ataxia: the oxidative stress paradox</title><title>Human molecular genetics</title><addtitle>Hum. Mol. Genet</addtitle><description>Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron–sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe–S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Cardiomyopathies</subject><subject>Cardiomyopathies - metabolism</subject><subject>Cardiomyopathies - pathology</subject><subject>Cytosol</subject><subject>Cytosol - enzymology</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Free Radical Scavengers</subject><subject>Free Radical Scavengers - metabolism</subject><subject>Friedreich Ataxia</subject><subject>Friedreich Ataxia - metabolism</subject><subject>Friedreich Ataxia - pathology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron Regulatory Protein 1</subject><subject>Iron Regulatory Protein 1 - metabolism</subject><subject>Iron-Sulfur Proteins</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Manganese</subject><subject>Manganese - metabolism</subject><subject>Medical sciences</subject><subject>Metalloporphyrins</subject><subject>Metalloporphyrins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microarray Analysis</subject><subject>Mitochondria</subject><subject>Mitochondria - physiology</subject><subject>Molecular and cellular biology</subject><subject>Molecular biology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>Superoxide Dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0dGKEzEUBuAgiltXb3wAGQQFhbHnJDmZiXdLca1QEERx8SakScZmnXZqMl3q25tlyi5441Xg5ONPDj9jzxHeIWgx32x_zr2PIPkDNkOpoObQiodsBlrJWmlQZ-xJztcAqKRoHrMzJIXUNDhj88sUg08huk1lR3uM9n01bkI1HKO3Y7wJVR5TyLna22T9cHzKHnW2z-HZ6Txn3y4_fF0s69Xnj58WF6vaETRjTbI8xlWHrVqTF0BWcELtyBEXyrsQnJDcESnV-RbBI4gg1w7DGj1BJ87Zmyl3Y3uzT3Fr0x8z2GiWFytzOyv5bdMouMFiX092n4bfh5BHs43Zhb63uzAcslGNBC1b-i_kQLJFLQt8-Q-8Hg5pVxY2HJFrIqkLejshl4acU-ju_olgbosxpRgzFVPwi1PiYb0N_p6emijg1QnY7GzfJbtzMd87RcQLLa6eXMxjON7d2_Sr7CkaMsurH0Z_Xyyu4EtjluIvEBmiJA</recordid><startdate>20050215</startdate><enddate>20050215</enddate><creator>Seznec, Hervé</creator><creator>Simon, Delphine</creator><creator>Bouton, Cécile</creator><creator>Reutenauer, Laurence</creator><creator>Hertzog, Ariane</creator><creator>Golik, Pawel</creator><creator>Procaccio, Vincent</creator><creator>Patel, Manisha</creator><creator>Drapier, Jean-Claude</creator><creator>Koenig, Michel</creator><creator>Puccio, Hélène</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2430-7328</orcidid><orcidid>https://orcid.org/0000-0001-6180-8925</orcidid></search><sort><creationdate>20050215</creationdate><title>Friedreich ataxia: the oxidative stress paradox</title><author>Seznec, Hervé ; Simon, Delphine ; Bouton, Cécile ; Reutenauer, Laurence ; Hertzog, Ariane ; Golik, Pawel ; Procaccio, Vincent ; Patel, Manisha ; Drapier, Jean-Claude ; Koenig, Michel ; Puccio, Hélène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-5400126f186b5d305a32519c5c5236dceec342c5566fd810d103e4bc1eb1d50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Cardiomyopathies</topic><topic>Cardiomyopathies - metabolism</topic><topic>Cardiomyopathies - pathology</topic><topic>Cytosol</topic><topic>Cytosol - enzymology</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Free Radical Scavengers</topic><topic>Free Radical Scavengers - metabolism</topic><topic>Friedreich Ataxia</topic><topic>Friedreich Ataxia - metabolism</topic><topic>Friedreich Ataxia - pathology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron Regulatory Protein 1</topic><topic>Iron Regulatory Protein 1 - metabolism</topic><topic>Iron-Sulfur Proteins</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Manganese</topic><topic>Manganese - metabolism</topic><topic>Medical sciences</topic><topic>Metalloporphyrins</topic><topic>Metalloporphyrins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microarray Analysis</topic><topic>Mitochondria</topic><topic>Mitochondria - physiology</topic><topic>Molecular and cellular biology</topic><topic>Molecular biology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>Superoxide Dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seznec, Hervé</creatorcontrib><creatorcontrib>Simon, Delphine</creatorcontrib><creatorcontrib>Bouton, Cécile</creatorcontrib><creatorcontrib>Reutenauer, Laurence</creatorcontrib><creatorcontrib>Hertzog, Ariane</creatorcontrib><creatorcontrib>Golik, Pawel</creatorcontrib><creatorcontrib>Procaccio, Vincent</creatorcontrib><creatorcontrib>Patel, Manisha</creatorcontrib><creatorcontrib>Drapier, Jean-Claude</creatorcontrib><creatorcontrib>Koenig, Michel</creatorcontrib><creatorcontrib>Puccio, Hélène</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seznec, Hervé</au><au>Simon, Delphine</au><au>Bouton, Cécile</au><au>Reutenauer, Laurence</au><au>Hertzog, Ariane</au><au>Golik, Pawel</au><au>Procaccio, Vincent</au><au>Patel, Manisha</au><au>Drapier, Jean-Claude</au><au>Koenig, Michel</au><au>Puccio, Hélène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Friedreich ataxia: the oxidative stress paradox</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum. Mol. Genet</addtitle><date>2005-02-15</date><risdate>2005</risdate><volume>14</volume><issue>4</issue><spage>463</spage><epage>474</epage><pages>463-474</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron–sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe–S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15615771</pmid><doi>10.1093/hmg/ddi042</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2430-7328</orcidid><orcidid>https://orcid.org/0000-0001-6180-8925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2005-02, Vol.14 (4), p.463-474
issn 0964-6906
1460-2083
language eng
recordid cdi_hal_primary_oai_HAL_hal_00187760v1
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Animals
Binding Sites
Biochemistry, Molecular Biology
Biological and medical sciences
Cardiomyopathies
Cardiomyopathies - metabolism
Cardiomyopathies - pathology
Cytosol
Cytosol - enzymology
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Free Radical Scavengers
Free Radical Scavengers - metabolism
Friedreich Ataxia
Friedreich Ataxia - metabolism
Friedreich Ataxia - pathology
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
Genetics of eukaryotes. Biological and molecular evolution
Iron
Iron - metabolism
Iron Regulatory Protein 1
Iron Regulatory Protein 1 - metabolism
Iron-Sulfur Proteins
Iron-Sulfur Proteins - metabolism
Life Sciences
Manganese
Manganese - metabolism
Medical sciences
Metalloporphyrins
Metalloporphyrins - metabolism
Mice
Mice, Knockout
Microarray Analysis
Mitochondria
Mitochondria - physiology
Molecular and cellular biology
Molecular biology
Neurology
Neurons
Oxidation-Reduction
Oxidative Stress
RNA
RNA - metabolism
Superoxide Dismutase
Superoxide Dismutase - metabolism
title Friedreich ataxia: the oxidative stress paradox
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Friedreich%20ataxia:%20the%20oxidative%20stress%20paradox&rft.jtitle=Human%20molecular%20genetics&rft.au=Seznec,%20Herve%CC%81&rft.date=2005-02-15&rft.volume=14&rft.issue=4&rft.spage=463&rft.epage=474&rft.pages=463-474&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/ddi042&rft_dat=%3Cproquest_hal_p%3E793978301%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211295549&rft_id=info:pmid/15615771&rfr_iscdi=true