Group Testing with Random Pools: Phase Transitions and Optimal Strategy

The problem of Group Testing is to identify defective items out of a set of objects by means of pool queries of the form “Does the pool contain at least a defective?”. The aim is of course to perform detection with the fewest possible queries, a problem which has relevant practical applications in d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2008-06, Vol.131 (5), p.783-801
Hauptverfasser: Mézard, M., Tarzia, M., Toninelli, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of Group Testing is to identify defective items out of a set of objects by means of pool queries of the form “Does the pool contain at least a defective?”. The aim is of course to perform detection with the fewest possible queries, a problem which has relevant practical applications in different fields including molecular biology and computer science. Here we study GT in the probabilistic setting focusing on the regime of small defective probability and large number of objects, p →0 and N →∞. We construct and analyze one-stage algorithms for which we establish the occurrence of a non-detection/detection phase transition resulting in a sharp threshold, , for the number of tests. By optimizing the pool design we construct algorithms whose detection threshold follows the optimal scaling . Then we consider two-stages algorithms and analyze their performance for different choices of the first stage pools. In particular, via a proper random choice of the pools, we construct algorithms which attain the optimal value (previously determined in (Mézard and Toninelli, arXiv:0706.3104)) for the mean number of tests required for complete detection. We finally discuss the optimal pool design in the case of finite  p .
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-008-9528-9