A new upper bound for the cross number of finite abelian groups
In this paper, building among others on earlier works by U. Krause and C. Zahlten (dealing with the case of cyclic groups), we obtain a new upper bound for the little cross number valid in the general case of arbitrary finite abelian groups. Given a finite abelian group, this upper bound appears to...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2009, Vol.172 (1), p.253-278 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | 1 |
container_start_page | 253 |
container_title | Israel journal of mathematics |
container_volume | 172 |
creator | Girard, Benjamin |
description | In this paper, building among others on earlier works by U. Krause and C. Zahlten (dealing with the case of cyclic groups), we obtain a new upper bound for the little cross number valid in the general case of arbitrary finite abelian groups. Given a finite abelian group, this upper bound appears to depend only on the rank and the number of distinct prime divisors of the exponent. The main theorem of this paper allows us, among other consequences, to prove that a classical conjecture concerning the cross and little cross numbers of finite abelian groups holds asymptotically in at least two different directions. |
doi_str_mv | 10.1007/s11856-009-0072-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00179677v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343281270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-1a34be16c21cacac44f337b536800f8a8bdb1ac1f33175c829c28e5fc2253fd83</originalsourceid><addsrcrecordid>eNp1kEFLAzEUhIMoWKs_wFvAk4doXrLZZE9Silqh4EXPIZsm7ZZ2sya7iv_e1BU9SQiByTfDe4PQJdAboFTeJgAlSkJpla9khB-hCYhSECUAjtGEUgaEgWSn6CylLaWCS-ATdDfDrfvAQ9e5iOswtCvsQ8T9xmEbQ0q4HfZ1_goe-6ZteodN7XaNafE6hqFL5-jEm11yFz_vFL0-3L_MF2T5_Pg0ny2J5RXvCRhe1A5Ky8CafIrCcy5rwUtFqVdG1asajIWsghRWscoy5YS3jAnuV4pP0fWYuzE73cVmb-KnDqbRi9lSHzRKQVallO-Q2auR7WJ4G1zq9TYMsc3jacYLzhQwSTMFI_W9Z3T-NxaoPnSqx05zcqUPnWqePWz0pMy2axf_kv83fQFJenc9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343281270</pqid></control><display><type>article</type><title>A new upper bound for the cross number of finite abelian groups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Girard, Benjamin</creator><creatorcontrib>Girard, Benjamin</creatorcontrib><description>In this paper, building among others on earlier works by U. Krause and C. Zahlten (dealing with the case of cyclic groups), we obtain a new upper bound for the little cross number valid in the general case of arbitrary finite abelian groups. Given a finite abelian group, this upper bound appears to depend only on the rank and the number of distinct prime divisors of the exponent. The main theorem of this paper allows us, among other consequences, to prove that a classical conjecture concerning the cross and little cross numbers of finite abelian groups holds asymptotically in at least two different directions.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-009-0072-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Combinatorics ; Group Theory ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Number Theory ; Theoretical ; Upper bounds</subject><ispartof>Israel journal of mathematics, 2009, Vol.172 (1), p.253-278</ispartof><rights>Hebrew University Magnes Press 2009</rights><rights>2009© Hebrew University Magnes Press 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-1a34be16c21cacac44f337b536800f8a8bdb1ac1f33175c829c28e5fc2253fd83</citedby><cites>FETCH-LOGICAL-c393t-1a34be16c21cacac44f337b536800f8a8bdb1ac1f33175c829c28e5fc2253fd83</cites><orcidid>0000-0003-2128-4383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-009-0072-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-009-0072-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00179677$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Girard, Benjamin</creatorcontrib><title>A new upper bound for the cross number of finite abelian groups</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>In this paper, building among others on earlier works by U. Krause and C. Zahlten (dealing with the case of cyclic groups), we obtain a new upper bound for the little cross number valid in the general case of arbitrary finite abelian groups. Given a finite abelian group, this upper bound appears to depend only on the rank and the number of distinct prime divisors of the exponent. The main theorem of this paper allows us, among other consequences, to prove that a classical conjecture concerning the cross and little cross numbers of finite abelian groups holds asymptotically in at least two different directions.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Combinatorics</subject><subject>Group Theory</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Number Theory</subject><subject>Theoretical</subject><subject>Upper bounds</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEUhIMoWKs_wFvAk4doXrLZZE9Silqh4EXPIZsm7ZZ2sya7iv_e1BU9SQiByTfDe4PQJdAboFTeJgAlSkJpla9khB-hCYhSECUAjtGEUgaEgWSn6CylLaWCS-ATdDfDrfvAQ9e5iOswtCvsQ8T9xmEbQ0q4HfZ1_goe-6ZteodN7XaNafE6hqFL5-jEm11yFz_vFL0-3L_MF2T5_Pg0ny2J5RXvCRhe1A5Ky8CafIrCcy5rwUtFqVdG1asajIWsghRWscoy5YS3jAnuV4pP0fWYuzE73cVmb-KnDqbRi9lSHzRKQVallO-Q2auR7WJ4G1zq9TYMsc3jacYLzhQwSTMFI_W9Z3T-NxaoPnSqx05zcqUPnWqePWz0pMy2axf_kv83fQFJenc9</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Girard, Benjamin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2128-4383</orcidid></search><sort><creationdate>2009</creationdate><title>A new upper bound for the cross number of finite abelian groups</title><author>Girard, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-1a34be16c21cacac44f337b536800f8a8bdb1ac1f33175c829c28e5fc2253fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Combinatorics</topic><topic>Group Theory</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Number Theory</topic><topic>Theoretical</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girard, Benjamin</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girard, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new upper bound for the cross number of finite abelian groups</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2009</date><risdate>2009</risdate><volume>172</volume><issue>1</issue><spage>253</spage><epage>278</epage><pages>253-278</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>In this paper, building among others on earlier works by U. Krause and C. Zahlten (dealing with the case of cyclic groups), we obtain a new upper bound for the little cross number valid in the general case of arbitrary finite abelian groups. Given a finite abelian group, this upper bound appears to depend only on the rank and the number of distinct prime divisors of the exponent. The main theorem of this paper allows us, among other consequences, to prove that a classical conjecture concerning the cross and little cross numbers of finite abelian groups holds asymptotically in at least two different directions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11856-009-0072-3</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2128-4383</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2009, Vol.172 (1), p.253-278 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00179677v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Applications of Mathematics Combinatorics Group Theory Group Theory and Generalizations Mathematical and Computational Physics Mathematics Number Theory Theoretical Upper bounds |
title | A new upper bound for the cross number of finite abelian groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20upper%20bound%20for%20the%20cross%20number%20of%20finite%20abelian%20groups&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Girard,%20Benjamin&rft.date=2009&rft.volume=172&rft.issue=1&rft.spage=253&rft.epage=278&rft.pages=253-278&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-009-0072-3&rft_dat=%3Cproquest_hal_p%3E2343281270%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343281270&rft_id=info:pmid/&rfr_iscdi=true |