Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel
The role of hydrophobic residues in voltage sensors S4 of voltage-sensitive ion channels is less documented than that of charged residues. We performed alanine-substitution of branched-sidechain residues contiguous to the third, fourth and fifth positively charged residues in S4s of the first three...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta 2007-06, Vol.1768 (6), p.1440-1447 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1447 |
---|---|
container_issue | 6 |
container_start_page | 1440 |
container_title | Biochimica et biophysica acta |
container_volume | 1768 |
creator | Bendahhou, Saïd O'Reilly, Andrias O. Duclohier, Hervé |
description | The role of hydrophobic residues in voltage sensors S4 of voltage-sensitive ion channels is less documented than that of charged residues. We performed alanine-substitution of branched-sidechain residues contiguous to the third, fourth and fifth positively charged residues in S4s of the first three domains of the sodium channel expressed in HEK cells. These locations were selected because they are close to the arginines and lysines important in gating. Mutations in the first two domains (DIS4 and DIIS4) altered steady-state activation curves. In DIIIS4, the mutation L1131A next to the third arginine greatly slowed inactivation in a manner similar to that for substitutions of charged residues in DIVS4, whereas the mutation L1137A next to the fifth arginine preserved wild-type behaviour. Homology models of domain III, based on the structure of a crystallized mammalian potassium channel, shows that L1131 is located at the interface between S3 and S4 helices, whereas L1137, on the opposite side of S4, does not interact with the voltage sensor. The two mutated residues are closer to each other in domains I and II than in domain III, as may be corroborated by their different electrophysiological effects. |
doi_str_mv | 10.1016/j.bbamem.2007.03.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00171469v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005273607000727</els_id><sourcerecordid>70549641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-fef2dbc8c537e998083f247752752af9f0db68dc3c8e777d89b4ab871939b9053</originalsourceid><addsrcrecordid>eNp9kF2L1DAUhoMo7uzqPxDpleBF60maNs2NsCzqCgOCKF6GfJxuM7TNmHQG9t-b0sH1SggEDs_7Hs5DyBsKFQXafjhUxugJp4oBiArqCoA9IzvaCVmylrPnZAcATclE3V6R65QOkGOcNS_JFRWcswztyK_vYcQi9MXw6GI4DsF4W0RM3p0wFX4ulgGLcxgX_YBFwjmFmFb8n3H5oBd0RQrOn6bCDnqecXxFXvR6TPj68t-Qn58__bi7L_ffvny9u92XlnNYyh575oztbFMLlLKDru4ZF6Jh-ele9uBM2zlb2w6FEK6ThmvTCSpraSQ09Q15v_UOelTH6CcdH1XQXt3f7tU6y0cLylt5ppl9t7HHGH7n8xY1-WRxHPWM4ZSUgIbLlq8g30AbQ0oR-7_NFNQqXx3UJl-t8hXUeQ3LsbeX_pOZ0D2FLrYz8HEDMBs5e4wqWY-zRecj2kW54P-_4Q_4opan</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70549641</pqid></control><display><type>article</type><title>Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bendahhou, Saïd ; O'Reilly, Andrias O. ; Duclohier, Hervé</creator><creatorcontrib>Bendahhou, Saïd ; O'Reilly, Andrias O. ; Duclohier, Hervé</creatorcontrib><description>The role of hydrophobic residues in voltage sensors S4 of voltage-sensitive ion channels is less documented than that of charged residues. We performed alanine-substitution of branched-sidechain residues contiguous to the third, fourth and fifth positively charged residues in S4s of the first three domains of the sodium channel expressed in HEK cells. These locations were selected because they are close to the arginines and lysines important in gating. Mutations in the first two domains (DIS4 and DIIS4) altered steady-state activation curves. In DIIIS4, the mutation L1131A next to the third arginine greatly slowed inactivation in a manner similar to that for substitutions of charged residues in DIVS4, whereas the mutation L1137A next to the fifth arginine preserved wild-type behaviour. Homology models of domain III, based on the structure of a crystallized mammalian potassium channel, shows that L1131 is located at the interface between S3 and S4 helices, whereas L1137, on the opposite side of S4, does not interact with the voltage sensor. The two mutated residues are closer to each other in domains I and II than in domain III, as may be corroborated by their different electrophysiological effects.</description><identifier>ISSN: 0005-2736</identifier><identifier>ISSN: 0006-3002</identifier><identifier>ISSN: 0167-4889</identifier><identifier>EISSN: 1879-2642</identifier><identifier>DOI: 10.1016/j.bbamem.2007.03.002</identifier><identifier>PMID: 17442264</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Activation–inactivation coupling ; Amino Acid Sequence ; Animal biology ; Biochemistry, Molecular Biology ; DNA Primers ; Electrophysiology ; Genetics ; Heterologous expression ; Humans ; Hydrophobic and Hydrophilic Interactions ; Life Sciences ; Models, Molecular ; Molecular modelling ; Molecular Sequence Data ; Mutation - genetics ; Patch-Clamp Techniques ; Protein Structure, Tertiary ; Sequence Homology ; Sodium Channels - genetics ; Sodium Channels - metabolism ; Voltage sensors</subject><ispartof>Biochimica et biophysica acta, 2007-06, Vol.1768 (6), p.1440-1447</ispartof><rights>2007 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-fef2dbc8c537e998083f247752752af9f0db68dc3c8e777d89b4ab871939b9053</citedby><cites>FETCH-LOGICAL-c440t-fef2dbc8c537e998083f247752752af9f0db68dc3c8e777d89b4ab871939b9053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbamem.2007.03.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17442264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00171469$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bendahhou, Saïd</creatorcontrib><creatorcontrib>O'Reilly, Andrias O.</creatorcontrib><creatorcontrib>Duclohier, Hervé</creatorcontrib><title>Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>The role of hydrophobic residues in voltage sensors S4 of voltage-sensitive ion channels is less documented than that of charged residues. We performed alanine-substitution of branched-sidechain residues contiguous to the third, fourth and fifth positively charged residues in S4s of the first three domains of the sodium channel expressed in HEK cells. These locations were selected because they are close to the arginines and lysines important in gating. Mutations in the first two domains (DIS4 and DIIS4) altered steady-state activation curves. In DIIIS4, the mutation L1131A next to the third arginine greatly slowed inactivation in a manner similar to that for substitutions of charged residues in DIVS4, whereas the mutation L1137A next to the fifth arginine preserved wild-type behaviour. Homology models of domain III, based on the structure of a crystallized mammalian potassium channel, shows that L1131 is located at the interface between S3 and S4 helices, whereas L1137, on the opposite side of S4, does not interact with the voltage sensor. The two mutated residues are closer to each other in domains I and II than in domain III, as may be corroborated by their different electrophysiological effects.</description><subject>Activation–inactivation coupling</subject><subject>Amino Acid Sequence</subject><subject>Animal biology</subject><subject>Biochemistry, Molecular Biology</subject><subject>DNA Primers</subject><subject>Electrophysiology</subject><subject>Genetics</subject><subject>Heterologous expression</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Patch-Clamp Techniques</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Homology</subject><subject>Sodium Channels - genetics</subject><subject>Sodium Channels - metabolism</subject><subject>Voltage sensors</subject><issn>0005-2736</issn><issn>0006-3002</issn><issn>0167-4889</issn><issn>1879-2642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF2L1DAUhoMo7uzqPxDpleBF60maNs2NsCzqCgOCKF6GfJxuM7TNmHQG9t-b0sH1SggEDs_7Hs5DyBsKFQXafjhUxugJp4oBiArqCoA9IzvaCVmylrPnZAcATclE3V6R65QOkGOcNS_JFRWcswztyK_vYcQi9MXw6GI4DsF4W0RM3p0wFX4ulgGLcxgX_YBFwjmFmFb8n3H5oBd0RQrOn6bCDnqecXxFXvR6TPj68t-Qn58__bi7L_ffvny9u92XlnNYyh575oztbFMLlLKDru4ZF6Jh-ele9uBM2zlb2w6FEK6ThmvTCSpraSQ09Q15v_UOelTH6CcdH1XQXt3f7tU6y0cLylt5ppl9t7HHGH7n8xY1-WRxHPWM4ZSUgIbLlq8g30AbQ0oR-7_NFNQqXx3UJl-t8hXUeQ3LsbeX_pOZ0D2FLrYz8HEDMBs5e4wqWY-zRecj2kW54P-_4Q_4opan</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Bendahhou, Saïd</creator><creator>O'Reilly, Andrias O.</creator><creator>Duclohier, Hervé</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20070601</creationdate><title>Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel</title><author>Bendahhou, Saïd ; O'Reilly, Andrias O. ; Duclohier, Hervé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-fef2dbc8c537e998083f247752752af9f0db68dc3c8e777d89b4ab871939b9053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Activation–inactivation coupling</topic><topic>Amino Acid Sequence</topic><topic>Animal biology</topic><topic>Biochemistry, Molecular Biology</topic><topic>DNA Primers</topic><topic>Electrophysiology</topic><topic>Genetics</topic><topic>Heterologous expression</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Patch-Clamp Techniques</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Homology</topic><topic>Sodium Channels - genetics</topic><topic>Sodium Channels - metabolism</topic><topic>Voltage sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendahhou, Saïd</creatorcontrib><creatorcontrib>O'Reilly, Andrias O.</creatorcontrib><creatorcontrib>Duclohier, Hervé</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendahhou, Saïd</au><au>O'Reilly, Andrias O.</au><au>Duclohier, Hervé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>1768</volume><issue>6</issue><spage>1440</spage><epage>1447</epage><pages>1440-1447</pages><issn>0005-2736</issn><issn>0006-3002</issn><issn>0167-4889</issn><eissn>1879-2642</eissn><abstract>The role of hydrophobic residues in voltage sensors S4 of voltage-sensitive ion channels is less documented than that of charged residues. We performed alanine-substitution of branched-sidechain residues contiguous to the third, fourth and fifth positively charged residues in S4s of the first three domains of the sodium channel expressed in HEK cells. These locations were selected because they are close to the arginines and lysines important in gating. Mutations in the first two domains (DIS4 and DIIS4) altered steady-state activation curves. In DIIIS4, the mutation L1131A next to the third arginine greatly slowed inactivation in a manner similar to that for substitutions of charged residues in DIVS4, whereas the mutation L1137A next to the fifth arginine preserved wild-type behaviour. Homology models of domain III, based on the structure of a crystallized mammalian potassium channel, shows that L1131 is located at the interface between S3 and S4 helices, whereas L1137, on the opposite side of S4, does not interact with the voltage sensor. The two mutated residues are closer to each other in domains I and II than in domain III, as may be corroborated by their different electrophysiological effects.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17442264</pmid><doi>10.1016/j.bbamem.2007.03.002</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-2736 |
ispartof | Biochimica et biophysica acta, 2007-06, Vol.1768 (6), p.1440-1447 |
issn | 0005-2736 0006-3002 0167-4889 1879-2642 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00171469v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Activation–inactivation coupling Amino Acid Sequence Animal biology Biochemistry, Molecular Biology DNA Primers Electrophysiology Genetics Heterologous expression Humans Hydrophobic and Hydrophilic Interactions Life Sciences Models, Molecular Molecular modelling Molecular Sequence Data Mutation - genetics Patch-Clamp Techniques Protein Structure, Tertiary Sequence Homology Sodium Channels - genetics Sodium Channels - metabolism Voltage sensors |
title | Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20hydrophobic%20residues%20in%20the%20voltage%20sensors%20of%20the%20voltage-gated%20sodium%20channel&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Bendahhou,%20Sa%C3%AFd&rft.date=2007-06-01&rft.volume=1768&rft.issue=6&rft.spage=1440&rft.epage=1447&rft.pages=1440-1447&rft.issn=0005-2736&rft.eissn=1879-2642&rft_id=info:doi/10.1016/j.bbamem.2007.03.002&rft_dat=%3Cproquest_hal_p%3E70549641%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70549641&rft_id=info:pmid/17442264&rft_els_id=S0005273607000727&rfr_iscdi=true |