Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel

The role of hydrophobic residues in voltage sensors S4 of voltage-sensitive ion channels is less documented than that of charged residues. We performed alanine-substitution of branched-sidechain residues contiguous to the third, fourth and fifth positively charged residues in S4s of the first three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2007-06, Vol.1768 (6), p.1440-1447
Hauptverfasser: Bendahhou, Saïd, O'Reilly, Andrias O., Duclohier, Hervé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1447
container_issue 6
container_start_page 1440
container_title Biochimica et biophysica acta
container_volume 1768
creator Bendahhou, Saïd
O'Reilly, Andrias O.
Duclohier, Hervé
description The role of hydrophobic residues in voltage sensors S4 of voltage-sensitive ion channels is less documented than that of charged residues. We performed alanine-substitution of branched-sidechain residues contiguous to the third, fourth and fifth positively charged residues in S4s of the first three domains of the sodium channel expressed in HEK cells. These locations were selected because they are close to the arginines and lysines important in gating. Mutations in the first two domains (DIS4 and DIIS4) altered steady-state activation curves. In DIIIS4, the mutation L1131A next to the third arginine greatly slowed inactivation in a manner similar to that for substitutions of charged residues in DIVS4, whereas the mutation L1137A next to the fifth arginine preserved wild-type behaviour. Homology models of domain III, based on the structure of a crystallized mammalian potassium channel, shows that L1131 is located at the interface between S3 and S4 helices, whereas L1137, on the opposite side of S4, does not interact with the voltage sensor. The two mutated residues are closer to each other in domains I and II than in domain III, as may be corroborated by their different electrophysiological effects.
doi_str_mv 10.1016/j.bbamem.2007.03.002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00171469v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005273607000727</els_id><sourcerecordid>70549641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-fef2dbc8c537e998083f247752752af9f0db68dc3c8e777d89b4ab871939b9053</originalsourceid><addsrcrecordid>eNp9kF2L1DAUhoMo7uzqPxDpleBF60maNs2NsCzqCgOCKF6GfJxuM7TNmHQG9t-b0sH1SggEDs_7Hs5DyBsKFQXafjhUxugJp4oBiArqCoA9IzvaCVmylrPnZAcATclE3V6R65QOkGOcNS_JFRWcswztyK_vYcQi9MXw6GI4DsF4W0RM3p0wFX4ulgGLcxgX_YBFwjmFmFb8n3H5oBd0RQrOn6bCDnqecXxFXvR6TPj68t-Qn58__bi7L_ffvny9u92XlnNYyh575oztbFMLlLKDru4ZF6Jh-ele9uBM2zlb2w6FEK6ThmvTCSpraSQ09Q15v_UOelTH6CcdH1XQXt3f7tU6y0cLylt5ppl9t7HHGH7n8xY1-WRxHPWM4ZSUgIbLlq8g30AbQ0oR-7_NFNQqXx3UJl-t8hXUeQ3LsbeX_pOZ0D2FLrYz8HEDMBs5e4wqWY-zRecj2kW54P-_4Q_4opan</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70549641</pqid></control><display><type>article</type><title>Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bendahhou, Saïd ; O'Reilly, Andrias O. ; Duclohier, Hervé</creator><creatorcontrib>Bendahhou, Saïd ; O'Reilly, Andrias O. ; Duclohier, Hervé</creatorcontrib><description>The role of hydrophobic residues in voltage sensors S4 of voltage-sensitive ion channels is less documented than that of charged residues. We performed alanine-substitution of branched-sidechain residues contiguous to the third, fourth and fifth positively charged residues in S4s of the first three domains of the sodium channel expressed in HEK cells. These locations were selected because they are close to the arginines and lysines important in gating. Mutations in the first two domains (DIS4 and DIIS4) altered steady-state activation curves. In DIIIS4, the mutation L1131A next to the third arginine greatly slowed inactivation in a manner similar to that for substitutions of charged residues in DIVS4, whereas the mutation L1137A next to the fifth arginine preserved wild-type behaviour. Homology models of domain III, based on the structure of a crystallized mammalian potassium channel, shows that L1131 is located at the interface between S3 and S4 helices, whereas L1137, on the opposite side of S4, does not interact with the voltage sensor. The two mutated residues are closer to each other in domains I and II than in domain III, as may be corroborated by their different electrophysiological effects.</description><identifier>ISSN: 0005-2736</identifier><identifier>ISSN: 0006-3002</identifier><identifier>ISSN: 0167-4889</identifier><identifier>EISSN: 1879-2642</identifier><identifier>DOI: 10.1016/j.bbamem.2007.03.002</identifier><identifier>PMID: 17442264</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Activation–inactivation coupling ; Amino Acid Sequence ; Animal biology ; Biochemistry, Molecular Biology ; DNA Primers ; Electrophysiology ; Genetics ; Heterologous expression ; Humans ; Hydrophobic and Hydrophilic Interactions ; Life Sciences ; Models, Molecular ; Molecular modelling ; Molecular Sequence Data ; Mutation - genetics ; Patch-Clamp Techniques ; Protein Structure, Tertiary ; Sequence Homology ; Sodium Channels - genetics ; Sodium Channels - metabolism ; Voltage sensors</subject><ispartof>Biochimica et biophysica acta, 2007-06, Vol.1768 (6), p.1440-1447</ispartof><rights>2007 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-fef2dbc8c537e998083f247752752af9f0db68dc3c8e777d89b4ab871939b9053</citedby><cites>FETCH-LOGICAL-c440t-fef2dbc8c537e998083f247752752af9f0db68dc3c8e777d89b4ab871939b9053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbamem.2007.03.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17442264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00171469$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bendahhou, Saïd</creatorcontrib><creatorcontrib>O'Reilly, Andrias O.</creatorcontrib><creatorcontrib>Duclohier, Hervé</creatorcontrib><title>Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>The role of hydrophobic residues in voltage sensors S4 of voltage-sensitive ion channels is less documented than that of charged residues. We performed alanine-substitution of branched-sidechain residues contiguous to the third, fourth and fifth positively charged residues in S4s of the first three domains of the sodium channel expressed in HEK cells. These locations were selected because they are close to the arginines and lysines important in gating. Mutations in the first two domains (DIS4 and DIIS4) altered steady-state activation curves. In DIIIS4, the mutation L1131A next to the third arginine greatly slowed inactivation in a manner similar to that for substitutions of charged residues in DIVS4, whereas the mutation L1137A next to the fifth arginine preserved wild-type behaviour. Homology models of domain III, based on the structure of a crystallized mammalian potassium channel, shows that L1131 is located at the interface between S3 and S4 helices, whereas L1137, on the opposite side of S4, does not interact with the voltage sensor. The two mutated residues are closer to each other in domains I and II than in domain III, as may be corroborated by their different electrophysiological effects.</description><subject>Activation–inactivation coupling</subject><subject>Amino Acid Sequence</subject><subject>Animal biology</subject><subject>Biochemistry, Molecular Biology</subject><subject>DNA Primers</subject><subject>Electrophysiology</subject><subject>Genetics</subject><subject>Heterologous expression</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Patch-Clamp Techniques</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Homology</subject><subject>Sodium Channels - genetics</subject><subject>Sodium Channels - metabolism</subject><subject>Voltage sensors</subject><issn>0005-2736</issn><issn>0006-3002</issn><issn>0167-4889</issn><issn>1879-2642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF2L1DAUhoMo7uzqPxDpleBF60maNs2NsCzqCgOCKF6GfJxuM7TNmHQG9t-b0sH1SggEDs_7Hs5DyBsKFQXafjhUxugJp4oBiArqCoA9IzvaCVmylrPnZAcATclE3V6R65QOkGOcNS_JFRWcswztyK_vYcQi9MXw6GI4DsF4W0RM3p0wFX4ulgGLcxgX_YBFwjmFmFb8n3H5oBd0RQrOn6bCDnqecXxFXvR6TPj68t-Qn58__bi7L_ffvny9u92XlnNYyh575oztbFMLlLKDru4ZF6Jh-ele9uBM2zlb2w6FEK6ThmvTCSpraSQ09Q15v_UOelTH6CcdH1XQXt3f7tU6y0cLylt5ppl9t7HHGH7n8xY1-WRxHPWM4ZSUgIbLlq8g30AbQ0oR-7_NFNQqXx3UJl-t8hXUeQ3LsbeX_pOZ0D2FLrYz8HEDMBs5e4wqWY-zRecj2kW54P-_4Q_4opan</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Bendahhou, Saïd</creator><creator>O'Reilly, Andrias O.</creator><creator>Duclohier, Hervé</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20070601</creationdate><title>Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel</title><author>Bendahhou, Saïd ; O'Reilly, Andrias O. ; Duclohier, Hervé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-fef2dbc8c537e998083f247752752af9f0db68dc3c8e777d89b4ab871939b9053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Activation–inactivation coupling</topic><topic>Amino Acid Sequence</topic><topic>Animal biology</topic><topic>Biochemistry, Molecular Biology</topic><topic>DNA Primers</topic><topic>Electrophysiology</topic><topic>Genetics</topic><topic>Heterologous expression</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Patch-Clamp Techniques</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Homology</topic><topic>Sodium Channels - genetics</topic><topic>Sodium Channels - metabolism</topic><topic>Voltage sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendahhou, Saïd</creatorcontrib><creatorcontrib>O'Reilly, Andrias O.</creatorcontrib><creatorcontrib>Duclohier, Hervé</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendahhou, Saïd</au><au>O'Reilly, Andrias O.</au><au>Duclohier, Hervé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>1768</volume><issue>6</issue><spage>1440</spage><epage>1447</epage><pages>1440-1447</pages><issn>0005-2736</issn><issn>0006-3002</issn><issn>0167-4889</issn><eissn>1879-2642</eissn><abstract>The role of hydrophobic residues in voltage sensors S4 of voltage-sensitive ion channels is less documented than that of charged residues. We performed alanine-substitution of branched-sidechain residues contiguous to the third, fourth and fifth positively charged residues in S4s of the first three domains of the sodium channel expressed in HEK cells. These locations were selected because they are close to the arginines and lysines important in gating. Mutations in the first two domains (DIS4 and DIIS4) altered steady-state activation curves. In DIIIS4, the mutation L1131A next to the third arginine greatly slowed inactivation in a manner similar to that for substitutions of charged residues in DIVS4, whereas the mutation L1137A next to the fifth arginine preserved wild-type behaviour. Homology models of domain III, based on the structure of a crystallized mammalian potassium channel, shows that L1131 is located at the interface between S3 and S4 helices, whereas L1137, on the opposite side of S4, does not interact with the voltage sensor. The two mutated residues are closer to each other in domains I and II than in domain III, as may be corroborated by their different electrophysiological effects.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17442264</pmid><doi>10.1016/j.bbamem.2007.03.002</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2736
ispartof Biochimica et biophysica acta, 2007-06, Vol.1768 (6), p.1440-1447
issn 0005-2736
0006-3002
0167-4889
1879-2642
language eng
recordid cdi_hal_primary_oai_HAL_hal_00171469v1
source MEDLINE; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Activation–inactivation coupling
Amino Acid Sequence
Animal biology
Biochemistry, Molecular Biology
DNA Primers
Electrophysiology
Genetics
Heterologous expression
Humans
Hydrophobic and Hydrophilic Interactions
Life Sciences
Models, Molecular
Molecular modelling
Molecular Sequence Data
Mutation - genetics
Patch-Clamp Techniques
Protein Structure, Tertiary
Sequence Homology
Sodium Channels - genetics
Sodium Channels - metabolism
Voltage sensors
title Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20hydrophobic%20residues%20in%20the%20voltage%20sensors%20of%20the%20voltage-gated%20sodium%20channel&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Bendahhou,%20Sa%C3%AFd&rft.date=2007-06-01&rft.volume=1768&rft.issue=6&rft.spage=1440&rft.epage=1447&rft.pages=1440-1447&rft.issn=0005-2736&rft.eissn=1879-2642&rft_id=info:doi/10.1016/j.bbamem.2007.03.002&rft_dat=%3Cproquest_hal_p%3E70549641%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70549641&rft_id=info:pmid/17442264&rft_els_id=S0005273607000727&rfr_iscdi=true