Asynchronous games 2: The true concurrency of innocence
In game semantics, the higher-order value passing mechanisms of the λ -calculus are decomposed as sequences of atomic actions exchanged by a Player and its Opponent. Seen from this angle, game semantics is reminiscent of trace semantics in concurrency theory, where a process is identified to the seq...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2006-08, Vol.358 (2), p.200-228 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 2 |
container_start_page | 200 |
container_title | Theoretical computer science |
container_volume | 358 |
creator | MELLIES, Paul-André |
description | In game semantics, the higher-order value passing mechanisms of the
λ
-calculus are decomposed as sequences of atomic actions exchanged by a Player and its Opponent. Seen from this angle, game semantics is reminiscent of trace semantics in concurrency theory, where a process is identified to the sequences of requests it generates in the course of time. Asynchronous game semantics is an attempt to bridge the gap between the two subjects, and to see mainstream game semantics as a refined and interactive form of trace semantics. Asynchronous games are positional games played on Mazurkiewicz traces, which reformulate (and generalize) the familiar notion of arena game. The interleaving semantics of
λ
-terms, expressed as innocent strategies, may be analysed in this framework, in the perspective of true concurrency. The analysis reveals that innocent strategies are positional strategies regulated by forward and backward confluence properties. This captures, we believe, the essence of innocence. We conclude the article by defining a non-uniform variant of the
λ
-calculus, in which the game semantics of a
λ
-term is formulated directly as a trace semantics, performing the syntactic exploration or parsing of that
λ
-term. |
doi_str_mv | 10.1016/j.tcs.2006.01.016 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00154262v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397506000521</els_id><sourcerecordid>oai_HAL_hal_00154262v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-fd863a8dd24bbdb28a2358b59ceb9b3b48fbc907bc914f400e9b45243d71c3563</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNtePHjYdfKxX3oqpVqh4KWeQzKbtSntpiTbQv-9WVb0ZhgyzPC-b8hDyD2FjAItnrZZjyFjAEUGNFZxQSa0KuuUsVpckglwECmvy_ya3ISwhXjyspiQchbOHW6869wxJF9qb0LCnpP1xiS9P5oEXYdH702H58S1ie06h3Ewt-SqVbtg7n76lHy-LtbzZbr6eHufz1YpChB92jZVwVXVNExo3WhWKcbzSuc1Gl1rrkXVaqyhjBcVrQAwtRY5E7wpKfK84FPyOOZu1E4evN0rf5ZOWbmcreSwA6C5YAU70ailoxa9C8Gb9tdAQQ6U5FZGSnKgJIHGGvIfRs9BBVS71qsObfgzViAixiH7ZdSZ-NmTNV4GtAOIxnqDvWyc_eeVbw8Ue04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asynchronous games 2: The true concurrency of innocence</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MELLIES, Paul-André</creator><creatorcontrib>MELLIES, Paul-André</creatorcontrib><description>In game semantics, the higher-order value passing mechanisms of the
λ
-calculus are decomposed as sequences of atomic actions exchanged by a Player and its Opponent. Seen from this angle, game semantics is reminiscent of trace semantics in concurrency theory, where a process is identified to the sequences of requests it generates in the course of time. Asynchronous game semantics is an attempt to bridge the gap between the two subjects, and to see mainstream game semantics as a refined and interactive form of trace semantics. Asynchronous games are positional games played on Mazurkiewicz traces, which reformulate (and generalize) the familiar notion of arena game. The interleaving semantics of
λ
-terms, expressed as innocent strategies, may be analysed in this framework, in the perspective of true concurrency. The analysis reveals that innocent strategies are positional strategies regulated by forward and backward confluence properties. This captures, we believe, the essence of innocence. We conclude the article by defining a non-uniform variant of the
λ
-calculus, in which the game semantics of a
λ
-term is formulated directly as a trace semantics, performing the syntactic exploration or parsing of that
λ
-term.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2006.01.016</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-calculus ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Game semantics ; General logic ; Language theory and syntactical analysis ; Logic and foundations ; Logic in Computer Science ; Mathematical logic, foundations, set theory ; Mathematics ; Mazurkiewicz traces ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2006-08, Vol.358 (2), p.200-228</ispartof><rights>2006</rights><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-fd863a8dd24bbdb28a2358b59ceb9b3b48fbc907bc914f400e9b45243d71c3563</citedby><cites>FETCH-LOGICAL-c404t-fd863a8dd24bbdb28a2358b59ceb9b3b48fbc907bc914f400e9b45243d71c3563</cites><orcidid>0000-0001-6180-2275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2006.01.016$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18041871$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00154262$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>MELLIES, Paul-André</creatorcontrib><title>Asynchronous games 2: The true concurrency of innocence</title><title>Theoretical computer science</title><description>In game semantics, the higher-order value passing mechanisms of the
λ
-calculus are decomposed as sequences of atomic actions exchanged by a Player and its Opponent. Seen from this angle, game semantics is reminiscent of trace semantics in concurrency theory, where a process is identified to the sequences of requests it generates in the course of time. Asynchronous game semantics is an attempt to bridge the gap between the two subjects, and to see mainstream game semantics as a refined and interactive form of trace semantics. Asynchronous games are positional games played on Mazurkiewicz traces, which reformulate (and generalize) the familiar notion of arena game. The interleaving semantics of
λ
-terms, expressed as innocent strategies, may be analysed in this framework, in the perspective of true concurrency. The analysis reveals that innocent strategies are positional strategies regulated by forward and backward confluence properties. This captures, we believe, the essence of innocence. We conclude the article by defining a non-uniform variant of the
λ
-calculus, in which the game semantics of a
λ
-term is formulated directly as a trace semantics, performing the syntactic exploration or parsing of that
λ
-term.</description><subject>[formula omitted]-calculus</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Game semantics</subject><subject>General logic</subject><subject>Language theory and syntactical analysis</subject><subject>Logic and foundations</subject><subject>Logic in Computer Science</subject><subject>Mathematical logic, foundations, set theory</subject><subject>Mathematics</subject><subject>Mazurkiewicz traces</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNtePHjYdfKxX3oqpVqh4KWeQzKbtSntpiTbQv-9WVb0ZhgyzPC-b8hDyD2FjAItnrZZjyFjAEUGNFZxQSa0KuuUsVpckglwECmvy_ya3ISwhXjyspiQchbOHW6869wxJF9qb0LCnpP1xiS9P5oEXYdH702H58S1ie06h3Ewt-SqVbtg7n76lHy-LtbzZbr6eHufz1YpChB92jZVwVXVNExo3WhWKcbzSuc1Gl1rrkXVaqyhjBcVrQAwtRY5E7wpKfK84FPyOOZu1E4evN0rf5ZOWbmcreSwA6C5YAU70ailoxa9C8Gb9tdAQQ6U5FZGSnKgJIHGGvIfRs9BBVS71qsObfgzViAixiH7ZdSZ-NmTNV4GtAOIxnqDvWyc_eeVbw8Ue04</recordid><startdate>20060807</startdate><enddate>20060807</enddate><creator>MELLIES, Paul-André</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6180-2275</orcidid></search><sort><creationdate>20060807</creationdate><title>Asynchronous games 2: The true concurrency of innocence</title><author>MELLIES, Paul-André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-fd863a8dd24bbdb28a2358b59ceb9b3b48fbc907bc914f400e9b45243d71c3563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>[formula omitted]-calculus</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Game semantics</topic><topic>General logic</topic><topic>Language theory and syntactical analysis</topic><topic>Logic and foundations</topic><topic>Logic in Computer Science</topic><topic>Mathematical logic, foundations, set theory</topic><topic>Mathematics</topic><topic>Mazurkiewicz traces</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MELLIES, Paul-André</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MELLIES, Paul-André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asynchronous games 2: The true concurrency of innocence</atitle><jtitle>Theoretical computer science</jtitle><date>2006-08-07</date><risdate>2006</risdate><volume>358</volume><issue>2</issue><spage>200</spage><epage>228</epage><pages>200-228</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>In game semantics, the higher-order value passing mechanisms of the
λ
-calculus are decomposed as sequences of atomic actions exchanged by a Player and its Opponent. Seen from this angle, game semantics is reminiscent of trace semantics in concurrency theory, where a process is identified to the sequences of requests it generates in the course of time. Asynchronous game semantics is an attempt to bridge the gap between the two subjects, and to see mainstream game semantics as a refined and interactive form of trace semantics. Asynchronous games are positional games played on Mazurkiewicz traces, which reformulate (and generalize) the familiar notion of arena game. The interleaving semantics of
λ
-terms, expressed as innocent strategies, may be analysed in this framework, in the perspective of true concurrency. The analysis reveals that innocent strategies are positional strategies regulated by forward and backward confluence properties. This captures, we believe, the essence of innocence. We conclude the article by defining a non-uniform variant of the
λ
-calculus, in which the game semantics of a
λ
-term is formulated directly as a trace semantics, performing the syntactic exploration or parsing of that
λ
-term.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2006.01.016</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-6180-2275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2006-08, Vol.358 (2), p.200-228 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00154262v1 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | [formula omitted]-calculus Algorithmics. Computability. Computer arithmetics Applied sciences Computer Science Computer science control theory systems Exact sciences and technology Game semantics General logic Language theory and syntactical analysis Logic and foundations Logic in Computer Science Mathematical logic, foundations, set theory Mathematics Mazurkiewicz traces Sciences and techniques of general use Theoretical computing |
title | Asynchronous games 2: The true concurrency of innocence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asynchronous%20games%202:%20The%20true%20concurrency%20of%20innocence&rft.jtitle=Theoretical%20computer%20science&rft.au=MELLIES,%20Paul-Andr%C3%A9&rft.date=2006-08-07&rft.volume=358&rft.issue=2&rft.spage=200&rft.epage=228&rft.pages=200-228&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2006.01.016&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00154262v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0304397506000521&rfr_iscdi=true |