Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets

A large electric field at the surface of a ferromagnetic metal is expected to appreciably change its electron density. In particular, the metal's intrinsic magnetic properties, which are commonly regarded as fixed material constants, will be affected. This requires, however, that the surface ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2007-01, Vol.315 (5810), p.349-351
Hauptverfasser: Weisheit, Martin, Fähler, Sebastian, Marty, Alain, Souche, Yves, Poinsignon, Christiane, Givord, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 5810
container_start_page 349
container_title Science (American Association for the Advancement of Science)
container_volume 315
creator Weisheit, Martin
Fähler, Sebastian
Marty, Alain
Souche, Yves
Poinsignon, Christiane
Givord, Dominique
description A large electric field at the surface of a ferromagnetic metal is expected to appreciably change its electron density. In particular, the metal's intrinsic magnetic properties, which are commonly regarded as fixed material constants, will be affected. This requires, however, that the surface has a strong influence on the material's properties, as is the case with ultrathin films. We demonstrated that the magnetocrystalline anisotropy of ordered iron-platinum (FePt) and iron-palladium (FePd) intermetallic compounds can be reversibly modified by an applied electric field when immersed in an electrolyte. A voltage change of -0.6 volts on 2-nanometer-thick films altered the coercivity by -4.5 and +1% in FePt and FePd, respectively. The modification of the magnetic parameters was attributed to a change in the number of unpaired d electrons in response to the applied electric field. Our device structure is general and should be applicable for characterization of other thin-film magnetic systems.
doi_str_mv 10.1126/science.1136629
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00153072v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20035247</jstor_id><sourcerecordid>20035247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-1d64a133354d6c50330d60784405b0c2ce5bdaffcf3183e353f9e2f39b4f87363</originalsourceid><addsrcrecordid>eNqF0kFvFCEUB_CJ0di1evakTkxq9DD2wRsYODZNt63ZxoPtmbAMtGxmhhZmTPz2ss6kTTzoicD_x0t4j6J4S-ArIZQfJ-PtYGzeIOdUPitWBCSrJAV8XqwAkFcCGnZQvEppB5AziS-LA9JQrGVNVsW3s86aMXpTrr3t2upyaCdj2_IqtN55o0cfhjK48krfDnb0qS_9UF7f-aFa-64v1zbG0P_J0uvihdNdsm-W9bC4WZ9dn15Um-_nl6cnm8owSceKtLzWBBFZ3XLDABFaDo2oa2BbMNRYtm21c8YhEWiRoZOWOpTb2okGOR4WX-a6d7pT99H3Ov5SQXt1cbJR-zMAwhAa-pNk-2m29zE8TDaNqvfJ2K7Tgw1TUlxIZFTw_8KsEKmEDD__ExIQlAhBQWT68S-6C1Mccm8UJZibwXFf73hGJoaUonWPTyKg9jNWy4zVMuN84_1Sdtr2tn3yy1AzOFqATkZ3LurB-PTkRN3kpjfZvZvdLo0hPuY0fxtG633-Yc6dDkrfxlzj5gcFgpAvy0ZS_A3Vtr9C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213592630</pqid></control><display><type>article</type><title>Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Weisheit, Martin ; Fähler, Sebastian ; Marty, Alain ; Souche, Yves ; Poinsignon, Christiane ; Givord, Dominique</creator><creatorcontrib>Weisheit, Martin ; Fähler, Sebastian ; Marty, Alain ; Souche, Yves ; Poinsignon, Christiane ; Givord, Dominique</creatorcontrib><description>A large electric field at the surface of a ferromagnetic metal is expected to appreciably change its electron density. In particular, the metal's intrinsic magnetic properties, which are commonly regarded as fixed material constants, will be affected. This requires, however, that the surface has a strong influence on the material's properties, as is the case with ultrathin films. We demonstrated that the magnetocrystalline anisotropy of ordered iron-platinum (FePt) and iron-palladium (FePd) intermetallic compounds can be reversibly modified by an applied electric field when immersed in an electrolyte. A voltage change of -0.6 volts on 2-nanometer-thick films altered the coercivity by -4.5 and +1% in FePt and FePd, respectively. The modification of the magnetic parameters was attributed to a change in the number of unpaired d electrons in response to the applied electric field. Our device structure is general and should be applicable for characterization of other thin-film magnetic systems.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1136629</identifier><identifier>PMID: 17234941</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Anisotropy ; Coercivity ; Condensed Matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Devices ; Electric fields ; Electric potential ; Electrolytes ; Electrons ; Exact sciences and technology ; Ferromagnetism ; Ferrous alloys ; Intermetallics ; Iron compounds ; Magnetic fields ; Magnetic properties ; Magnetic properties and materials ; Magnetic properties of monolayers and thin films ; Magnetic properties of nanostructures ; Magnetic properties of surface, thin films and multilayers ; Magnetism ; Material films ; Materials ; Materials Science ; Metals ; Palladium compounds ; Physics ; Platinum compounds</subject><ispartof>Science (American Association for the Advancement of Science), 2007-01, Vol.315 (5810), p.349-351</ispartof><rights>Copyright 2007 American Association for the Advancement of Science</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Association for the Advancement of Science Jan 19, 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-1d64a133354d6c50330d60784405b0c2ce5bdaffcf3183e353f9e2f39b4f87363</citedby><cites>FETCH-LOGICAL-c592t-1d64a133354d6c50330d60784405b0c2ce5bdaffcf3183e353f9e2f39b4f87363</cites><orcidid>0000-0001-5709-6945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20035247$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20035247$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,2871,2872,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18473307$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17234941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00153072$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Weisheit, Martin</creatorcontrib><creatorcontrib>Fähler, Sebastian</creatorcontrib><creatorcontrib>Marty, Alain</creatorcontrib><creatorcontrib>Souche, Yves</creatorcontrib><creatorcontrib>Poinsignon, Christiane</creatorcontrib><creatorcontrib>Givord, Dominique</creatorcontrib><title>Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A large electric field at the surface of a ferromagnetic metal is expected to appreciably change its electron density. In particular, the metal's intrinsic magnetic properties, which are commonly regarded as fixed material constants, will be affected. This requires, however, that the surface has a strong influence on the material's properties, as is the case with ultrathin films. We demonstrated that the magnetocrystalline anisotropy of ordered iron-platinum (FePt) and iron-palladium (FePd) intermetallic compounds can be reversibly modified by an applied electric field when immersed in an electrolyte. A voltage change of -0.6 volts on 2-nanometer-thick films altered the coercivity by -4.5 and +1% in FePt and FePd, respectively. The modification of the magnetic parameters was attributed to a change in the number of unpaired d electrons in response to the applied electric field. Our device structure is general and should be applicable for characterization of other thin-film magnetic systems.</description><subject>Anisotropy</subject><subject>Coercivity</subject><subject>Condensed Matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Devices</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Ferrous alloys</subject><subject>Intermetallics</subject><subject>Iron compounds</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of monolayers and thin films</subject><subject>Magnetic properties of nanostructures</subject><subject>Magnetic properties of surface, thin films and multilayers</subject><subject>Magnetism</subject><subject>Material films</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Palladium compounds</subject><subject>Physics</subject><subject>Platinum compounds</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0kFvFCEUB_CJ0di1evakTkxq9DD2wRsYODZNt63ZxoPtmbAMtGxmhhZmTPz2ss6kTTzoicD_x0t4j6J4S-ArIZQfJ-PtYGzeIOdUPitWBCSrJAV8XqwAkFcCGnZQvEppB5AziS-LA9JQrGVNVsW3s86aMXpTrr3t2upyaCdj2_IqtN55o0cfhjK48krfDnb0qS_9UF7f-aFa-64v1zbG0P_J0uvihdNdsm-W9bC4WZ9dn15Um-_nl6cnm8owSceKtLzWBBFZ3XLDABFaDo2oa2BbMNRYtm21c8YhEWiRoZOWOpTb2okGOR4WX-a6d7pT99H3Ov5SQXt1cbJR-zMAwhAa-pNk-2m29zE8TDaNqvfJ2K7Tgw1TUlxIZFTw_8KsEKmEDD__ExIQlAhBQWT68S-6C1Mccm8UJZibwXFf73hGJoaUonWPTyKg9jNWy4zVMuN84_1Sdtr2tn3yy1AzOFqATkZ3LurB-PTkRN3kpjfZvZvdLo0hPuY0fxtG633-Yc6dDkrfxlzj5gcFgpAvy0ZS_A3Vtr9C</recordid><startdate>20070119</startdate><enddate>20070119</enddate><creator>Weisheit, Martin</creator><creator>Fähler, Sebastian</creator><creator>Marty, Alain</creator><creator>Souche, Yves</creator><creator>Poinsignon, Christiane</creator><creator>Givord, Dominique</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5709-6945</orcidid></search><sort><creationdate>20070119</creationdate><title>Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets</title><author>Weisheit, Martin ; Fähler, Sebastian ; Marty, Alain ; Souche, Yves ; Poinsignon, Christiane ; Givord, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-1d64a133354d6c50330d60784405b0c2ce5bdaffcf3183e353f9e2f39b4f87363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Anisotropy</topic><topic>Coercivity</topic><topic>Condensed Matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Devices</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Ferrous alloys</topic><topic>Intermetallics</topic><topic>Iron compounds</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of monolayers and thin films</topic><topic>Magnetic properties of nanostructures</topic><topic>Magnetic properties of surface, thin films and multilayers</topic><topic>Magnetism</topic><topic>Material films</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Palladium compounds</topic><topic>Physics</topic><topic>Platinum compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weisheit, Martin</creatorcontrib><creatorcontrib>Fähler, Sebastian</creatorcontrib><creatorcontrib>Marty, Alain</creatorcontrib><creatorcontrib>Souche, Yves</creatorcontrib><creatorcontrib>Poinsignon, Christiane</creatorcontrib><creatorcontrib>Givord, Dominique</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weisheit, Martin</au><au>Fähler, Sebastian</au><au>Marty, Alain</au><au>Souche, Yves</au><au>Poinsignon, Christiane</au><au>Givord, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2007-01-19</date><risdate>2007</risdate><volume>315</volume><issue>5810</issue><spage>349</spage><epage>351</epage><pages>349-351</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>A large electric field at the surface of a ferromagnetic metal is expected to appreciably change its electron density. In particular, the metal's intrinsic magnetic properties, which are commonly regarded as fixed material constants, will be affected. This requires, however, that the surface has a strong influence on the material's properties, as is the case with ultrathin films. We demonstrated that the magnetocrystalline anisotropy of ordered iron-platinum (FePt) and iron-palladium (FePd) intermetallic compounds can be reversibly modified by an applied electric field when immersed in an electrolyte. A voltage change of -0.6 volts on 2-nanometer-thick films altered the coercivity by -4.5 and +1% in FePt and FePd, respectively. The modification of the magnetic parameters was attributed to a change in the number of unpaired d electrons in response to the applied electric field. Our device structure is general and should be applicable for characterization of other thin-film magnetic systems.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>17234941</pmid><doi>10.1126/science.1136629</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-5709-6945</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2007-01, Vol.315 (5810), p.349-351
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_hal_00153072v1
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Anisotropy
Coercivity
Condensed Matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Devices
Electric fields
Electric potential
Electrolytes
Electrons
Exact sciences and technology
Ferromagnetism
Ferrous alloys
Intermetallics
Iron compounds
Magnetic fields
Magnetic properties
Magnetic properties and materials
Magnetic properties of monolayers and thin films
Magnetic properties of nanostructures
Magnetic properties of surface, thin films and multilayers
Magnetism
Material films
Materials
Materials Science
Metals
Palladium compounds
Physics
Platinum compounds
title Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Field-Induced%20Modification%20of%20Magnetism%20in%20Thin-Film%20Ferromagnets&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Weisheit,%20Martin&rft.date=2007-01-19&rft.volume=315&rft.issue=5810&rft.spage=349&rft.epage=351&rft.pages=349-351&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1136629&rft_dat=%3Cjstor_hal_p%3E20035247%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213592630&rft_id=info:pmid/17234941&rft_jstor_id=20035247&rfr_iscdi=true