Grafting of poly(ε-caprolactone) onto maghemite nanoparticles
We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydro...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2004-12, Vol.42 (23), p.6011-6020 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6020 |
---|---|
container_issue | 23 |
container_start_page | 6011 |
container_title | Journal of polymer science. Part A, Polymer chemistry |
container_volume | 42 |
creator | Flesch, C. Delaite, C. Dumas, P. Bourgeat-Lami, E. Duguet, E. |
description | We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004
Condensation between silane functionalized poly(ε‐caprolactone) chains and surface hydroxyls of maghemite nanoparticles is reported for the first time. This strategy provides magnetic, biodegradable, and biocompatible nanoparticles with a relative high polymer surface coverage, up to 3 μmol · m−2, that could be used for therapeutic applications. |
doi_str_mv | 10.1002/pola.20449 |
format | Article |
fullrecord | <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00152879v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_F4GC8QWW_X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3759-e159268bfc868ac732b78dccbc448dfe8f96879925a9a926e061f173f30805063</originalsourceid><addsrcrecordid>eNp9kMFKwzAch4MoOKcXn6AXQYXOJG3T5CKM4TphOAVlu4X_smSrdm1JiroH8zV8JjOr8-YpkHzfR_ghdEpwj2BMr-qqgB7FcSz2UIdgIUKcEL6POpjzNGQ0nh2iI-eeMfZvCe-g68yCafJyGVQm8Pbm_PMjVFBbH1JNVeqLoCqbKljDcqXXeaODEsqqBtvkqtDuGB0YKJw--Tm76Gl48zgYheNJdjvoj0MVpYkINUkEZXxuFGccVBrRecoXSs1VHPOF0dwIxlMhaAICPKkxI4akkYkwxwlmURddtN0VFLK2-RrsRlaQy1F_LLd3GJOE-sQr8exlyypbOWe12QkEy-1KcruS_F7Jw2ctXINTUBgLpcrdn8Eoo_5jniMt95YXevNPUd5Pxv3fdtg6uWv0-84B-yJZ6neR07tMDuNswB-mUzmLvgBNU4Xd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grafting of poly(ε-caprolactone) onto maghemite nanoparticles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Flesch, C. ; Delaite, C. ; Dumas, P. ; Bourgeat-Lami, E. ; Duguet, E.</creator><creatorcontrib>Flesch, C. ; Delaite, C. ; Dumas, P. ; Bourgeat-Lami, E. ; Duguet, E.</creatorcontrib><description>We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004
Condensation between silane functionalized poly(ε‐caprolactone) chains and surface hydroxyls of maghemite nanoparticles is reported for the first time. This strategy provides magnetic, biodegradable, and biocompatible nanoparticles with a relative high polymer surface coverage, up to 3 μmol · m−2, that could be used for therapeutic applications.</description><identifier>ISSN: 0887-624X</identifier><identifier>EISSN: 1099-0518</identifier><identifier>DOI: 10.1002/pola.20449</identifier><identifier>CODEN: JPLCAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; biomaterial ; Chemical Sciences ; Exact sciences and technology ; Forms of application and semi-finished materials ; maghemite ; Material chemistry ; Miscellaneous ; nanocomposite ; poly(ε-caprolactone) ; Polymer industry, paints, wood ; ring-opening polymerization ; Technology of polymers</subject><ispartof>Journal of polymer science. Part A, Polymer chemistry, 2004-12, Vol.42 (23), p.6011-6020</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3759-e159268bfc868ac732b78dccbc448dfe8f96879925a9a926e061f173f30805063</citedby><cites>FETCH-LOGICAL-c3759-e159268bfc868ac732b78dccbc448dfe8f96879925a9a926e061f173f30805063</cites><orcidid>0000-0002-0675-5987 ; 0000-0002-7049-3897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpola.20449$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpola.20449$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16262799$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00152879$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Flesch, C.</creatorcontrib><creatorcontrib>Delaite, C.</creatorcontrib><creatorcontrib>Dumas, P.</creatorcontrib><creatorcontrib>Bourgeat-Lami, E.</creatorcontrib><creatorcontrib>Duguet, E.</creatorcontrib><title>Grafting of poly(ε-caprolactone) onto maghemite nanoparticles</title><title>Journal of polymer science. Part A, Polymer chemistry</title><addtitle>J. Polym. Sci. A Polym. Chem</addtitle><description>We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004
Condensation between silane functionalized poly(ε‐caprolactone) chains and surface hydroxyls of maghemite nanoparticles is reported for the first time. This strategy provides magnetic, biodegradable, and biocompatible nanoparticles with a relative high polymer surface coverage, up to 3 μmol · m−2, that could be used for therapeutic applications.</description><subject>Applied sciences</subject><subject>biomaterial</subject><subject>Chemical Sciences</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>maghemite</subject><subject>Material chemistry</subject><subject>Miscellaneous</subject><subject>nanocomposite</subject><subject>poly(ε-caprolactone)</subject><subject>Polymer industry, paints, wood</subject><subject>ring-opening polymerization</subject><subject>Technology of polymers</subject><issn>0887-624X</issn><issn>1099-0518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKwzAch4MoOKcXn6AXQYXOJG3T5CKM4TphOAVlu4X_smSrdm1JiroH8zV8JjOr8-YpkHzfR_ghdEpwj2BMr-qqgB7FcSz2UIdgIUKcEL6POpjzNGQ0nh2iI-eeMfZvCe-g68yCafJyGVQm8Pbm_PMjVFBbH1JNVeqLoCqbKljDcqXXeaODEsqqBtvkqtDuGB0YKJw--Tm76Gl48zgYheNJdjvoj0MVpYkINUkEZXxuFGccVBrRecoXSs1VHPOF0dwIxlMhaAICPKkxI4akkYkwxwlmURddtN0VFLK2-RrsRlaQy1F_LLd3GJOE-sQr8exlyypbOWe12QkEy-1KcruS_F7Jw2ctXINTUBgLpcrdn8Eoo_5jniMt95YXevNPUd5Pxv3fdtg6uWv0-84B-yJZ6neR07tMDuNswB-mUzmLvgBNU4Xd</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Flesch, C.</creator><creator>Delaite, C.</creator><creator>Dumas, P.</creator><creator>Bourgeat-Lami, E.</creator><creator>Duguet, E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0675-5987</orcidid><orcidid>https://orcid.org/0000-0002-7049-3897</orcidid></search><sort><creationdate>20041201</creationdate><title>Grafting of poly(ε-caprolactone) onto maghemite nanoparticles</title><author>Flesch, C. ; Delaite, C. ; Dumas, P. ; Bourgeat-Lami, E. ; Duguet, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3759-e159268bfc868ac732b78dccbc448dfe8f96879925a9a926e061f173f30805063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>biomaterial</topic><topic>Chemical Sciences</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>maghemite</topic><topic>Material chemistry</topic><topic>Miscellaneous</topic><topic>nanocomposite</topic><topic>poly(ε-caprolactone)</topic><topic>Polymer industry, paints, wood</topic><topic>ring-opening polymerization</topic><topic>Technology of polymers</topic><toplevel>online_resources</toplevel><creatorcontrib>Flesch, C.</creatorcontrib><creatorcontrib>Delaite, C.</creatorcontrib><creatorcontrib>Dumas, P.</creatorcontrib><creatorcontrib>Bourgeat-Lami, E.</creatorcontrib><creatorcontrib>Duguet, E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flesch, C.</au><au>Delaite, C.</au><au>Dumas, P.</au><au>Bourgeat-Lami, E.</au><au>Duguet, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grafting of poly(ε-caprolactone) onto maghemite nanoparticles</atitle><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle><addtitle>J. Polym. Sci. A Polym. Chem</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>42</volume><issue>23</issue><spage>6011</spage><epage>6020</epage><pages>6011-6020</pages><issn>0887-624X</issn><eissn>1099-0518</eissn><coden>JPLCAT</coden><abstract>We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004
Condensation between silane functionalized poly(ε‐caprolactone) chains and surface hydroxyls of maghemite nanoparticles is reported for the first time. This strategy provides magnetic, biodegradable, and biocompatible nanoparticles with a relative high polymer surface coverage, up to 3 μmol · m−2, that could be used for therapeutic applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pola.20449</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0675-5987</orcidid><orcidid>https://orcid.org/0000-0002-7049-3897</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-624X |
ispartof | Journal of polymer science. Part A, Polymer chemistry, 2004-12, Vol.42 (23), p.6011-6020 |
issn | 0887-624X 1099-0518 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00152879v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences biomaterial Chemical Sciences Exact sciences and technology Forms of application and semi-finished materials maghemite Material chemistry Miscellaneous nanocomposite poly(ε-caprolactone) Polymer industry, paints, wood ring-opening polymerization Technology of polymers |
title | Grafting of poly(ε-caprolactone) onto maghemite nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grafting%20of%20poly(%CE%B5-caprolactone)%20onto%20maghemite%20nanoparticles&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20A,%20Polymer%20chemistry&rft.au=Flesch,%20C.&rft.date=2004-12-01&rft.volume=42&rft.issue=23&rft.spage=6011&rft.epage=6020&rft.pages=6011-6020&rft.issn=0887-624X&rft.eissn=1099-0518&rft.coden=JPLCAT&rft_id=info:doi/10.1002/pola.20449&rft_dat=%3Cistex_hal_p%3Eark_67375_WNG_F4GC8QWW_X%3C/istex_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |