Grafting of poly(ε-caprolactone) onto maghemite nanoparticles

We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2004-12, Vol.42 (23), p.6011-6020
Hauptverfasser: Flesch, C., Delaite, C., Dumas, P., Bourgeat-Lami, E., Duguet, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6020
container_issue 23
container_start_page 6011
container_title Journal of polymer science. Part A, Polymer chemistry
container_volume 42
creator Flesch, C.
Delaite, C.
Dumas, P.
Bourgeat-Lami, E.
Duguet, E.
description We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004 Condensation between silane functionalized poly(ε‐caprolactone) chains and surface hydroxyls of maghemite nanoparticles is reported for the first time. This strategy provides magnetic, biodegradable, and biocompatible nanoparticles with a relative high polymer surface coverage, up to 3 μmol · m−2, that could be used for therapeutic applications.
doi_str_mv 10.1002/pola.20449
format Article
fullrecord <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00152879v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_F4GC8QWW_X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3759-e159268bfc868ac732b78dccbc448dfe8f96879925a9a926e061f173f30805063</originalsourceid><addsrcrecordid>eNp9kMFKwzAch4MoOKcXn6AXQYXOJG3T5CKM4TphOAVlu4X_smSrdm1JiroH8zV8JjOr8-YpkHzfR_ghdEpwj2BMr-qqgB7FcSz2UIdgIUKcEL6POpjzNGQ0nh2iI-eeMfZvCe-g68yCafJyGVQm8Pbm_PMjVFBbH1JNVeqLoCqbKljDcqXXeaODEsqqBtvkqtDuGB0YKJw--Tm76Gl48zgYheNJdjvoj0MVpYkINUkEZXxuFGccVBrRecoXSs1VHPOF0dwIxlMhaAICPKkxI4akkYkwxwlmURddtN0VFLK2-RrsRlaQy1F_LLd3GJOE-sQr8exlyypbOWe12QkEy-1KcruS_F7Jw2ctXINTUBgLpcrdn8Eoo_5jniMt95YXevNPUd5Pxv3fdtg6uWv0-84B-yJZ6neR07tMDuNswB-mUzmLvgBNU4Xd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grafting of poly(ε-caprolactone) onto maghemite nanoparticles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Flesch, C. ; Delaite, C. ; Dumas, P. ; Bourgeat-Lami, E. ; Duguet, E.</creator><creatorcontrib>Flesch, C. ; Delaite, C. ; Dumas, P. ; Bourgeat-Lami, E. ; Duguet, E.</creatorcontrib><description>We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004 Condensation between silane functionalized poly(ε‐caprolactone) chains and surface hydroxyls of maghemite nanoparticles is reported for the first time. This strategy provides magnetic, biodegradable, and biocompatible nanoparticles with a relative high polymer surface coverage, up to 3 μmol · m−2, that could be used for therapeutic applications.</description><identifier>ISSN: 0887-624X</identifier><identifier>EISSN: 1099-0518</identifier><identifier>DOI: 10.1002/pola.20449</identifier><identifier>CODEN: JPLCAT</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; biomaterial ; Chemical Sciences ; Exact sciences and technology ; Forms of application and semi-finished materials ; maghemite ; Material chemistry ; Miscellaneous ; nanocomposite ; poly(ε-caprolactone) ; Polymer industry, paints, wood ; ring-opening polymerization ; Technology of polymers</subject><ispartof>Journal of polymer science. Part A, Polymer chemistry, 2004-12, Vol.42 (23), p.6011-6020</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3759-e159268bfc868ac732b78dccbc448dfe8f96879925a9a926e061f173f30805063</citedby><cites>FETCH-LOGICAL-c3759-e159268bfc868ac732b78dccbc448dfe8f96879925a9a926e061f173f30805063</cites><orcidid>0000-0002-0675-5987 ; 0000-0002-7049-3897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpola.20449$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpola.20449$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16262799$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00152879$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Flesch, C.</creatorcontrib><creatorcontrib>Delaite, C.</creatorcontrib><creatorcontrib>Dumas, P.</creatorcontrib><creatorcontrib>Bourgeat-Lami, E.</creatorcontrib><creatorcontrib>Duguet, E.</creatorcontrib><title>Grafting of poly(ε-caprolactone) onto maghemite nanoparticles</title><title>Journal of polymer science. Part A, Polymer chemistry</title><addtitle>J. Polym. Sci. A Polym. Chem</addtitle><description>We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004 Condensation between silane functionalized poly(ε‐caprolactone) chains and surface hydroxyls of maghemite nanoparticles is reported for the first time. This strategy provides magnetic, biodegradable, and biocompatible nanoparticles with a relative high polymer surface coverage, up to 3 μmol · m−2, that could be used for therapeutic applications.</description><subject>Applied sciences</subject><subject>biomaterial</subject><subject>Chemical Sciences</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>maghemite</subject><subject>Material chemistry</subject><subject>Miscellaneous</subject><subject>nanocomposite</subject><subject>poly(ε-caprolactone)</subject><subject>Polymer industry, paints, wood</subject><subject>ring-opening polymerization</subject><subject>Technology of polymers</subject><issn>0887-624X</issn><issn>1099-0518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKwzAch4MoOKcXn6AXQYXOJG3T5CKM4TphOAVlu4X_smSrdm1JiroH8zV8JjOr8-YpkHzfR_ghdEpwj2BMr-qqgB7FcSz2UIdgIUKcEL6POpjzNGQ0nh2iI-eeMfZvCe-g68yCafJyGVQm8Pbm_PMjVFBbH1JNVeqLoCqbKljDcqXXeaODEsqqBtvkqtDuGB0YKJw--Tm76Gl48zgYheNJdjvoj0MVpYkINUkEZXxuFGccVBrRecoXSs1VHPOF0dwIxlMhaAICPKkxI4akkYkwxwlmURddtN0VFLK2-RrsRlaQy1F_LLd3GJOE-sQr8exlyypbOWe12QkEy-1KcruS_F7Jw2ctXINTUBgLpcrdn8Eoo_5jniMt95YXevNPUd5Pxv3fdtg6uWv0-84B-yJZ6neR07tMDuNswB-mUzmLvgBNU4Xd</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Flesch, C.</creator><creator>Delaite, C.</creator><creator>Dumas, P.</creator><creator>Bourgeat-Lami, E.</creator><creator>Duguet, E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0675-5987</orcidid><orcidid>https://orcid.org/0000-0002-7049-3897</orcidid></search><sort><creationdate>20041201</creationdate><title>Grafting of poly(ε-caprolactone) onto maghemite nanoparticles</title><author>Flesch, C. ; Delaite, C. ; Dumas, P. ; Bourgeat-Lami, E. ; Duguet, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3759-e159268bfc868ac732b78dccbc448dfe8f96879925a9a926e061f173f30805063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>biomaterial</topic><topic>Chemical Sciences</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>maghemite</topic><topic>Material chemistry</topic><topic>Miscellaneous</topic><topic>nanocomposite</topic><topic>poly(ε-caprolactone)</topic><topic>Polymer industry, paints, wood</topic><topic>ring-opening polymerization</topic><topic>Technology of polymers</topic><toplevel>online_resources</toplevel><creatorcontrib>Flesch, C.</creatorcontrib><creatorcontrib>Delaite, C.</creatorcontrib><creatorcontrib>Dumas, P.</creatorcontrib><creatorcontrib>Bourgeat-Lami, E.</creatorcontrib><creatorcontrib>Duguet, E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flesch, C.</au><au>Delaite, C.</au><au>Dumas, P.</au><au>Bourgeat-Lami, E.</au><au>Duguet, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grafting of poly(ε-caprolactone) onto maghemite nanoparticles</atitle><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle><addtitle>J. Polym. Sci. A Polym. Chem</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>42</volume><issue>23</issue><spage>6011</spage><epage>6020</epage><pages>6011-6020</pages><issn>0887-624X</issn><eissn>1099-0518</eissn><coden>JPLCAT</coden><abstract>We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004 Condensation between silane functionalized poly(ε‐caprolactone) chains and surface hydroxyls of maghemite nanoparticles is reported for the first time. This strategy provides magnetic, biodegradable, and biocompatible nanoparticles with a relative high polymer surface coverage, up to 3 μmol · m−2, that could be used for therapeutic applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pola.20449</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0675-5987</orcidid><orcidid>https://orcid.org/0000-0002-7049-3897</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-624X
ispartof Journal of polymer science. Part A, Polymer chemistry, 2004-12, Vol.42 (23), p.6011-6020
issn 0887-624X
1099-0518
language eng
recordid cdi_hal_primary_oai_HAL_hal_00152879v1
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
biomaterial
Chemical Sciences
Exact sciences and technology
Forms of application and semi-finished materials
maghemite
Material chemistry
Miscellaneous
nanocomposite
poly(ε-caprolactone)
Polymer industry, paints, wood
ring-opening polymerization
Technology of polymers
title Grafting of poly(ε-caprolactone) onto maghemite nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grafting%20of%20poly(%CE%B5-caprolactone)%20onto%20maghemite%20nanoparticles&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20A,%20Polymer%20chemistry&rft.au=Flesch,%20C.&rft.date=2004-12-01&rft.volume=42&rft.issue=23&rft.spage=6011&rft.epage=6020&rft.pages=6011-6020&rft.issn=0887-624X&rft.eissn=1099-0518&rft.coden=JPLCAT&rft_id=info:doi/10.1002/pola.20449&rft_dat=%3Cistex_hal_p%3Eark_67375_WNG_F4GC8QWW_X%3C/istex_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true