Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H > 1/4: A Rough Path Method by Analytic Extension

The d-dimensional fractional Brownian motion (FBM for short) $B_{t} = ((B_{t}^{(1)},..., B_{t}^{(d)}), t \in \mathbb{R})$ with Hurst exponent α, α ∊ (0, 1), is a d-dimensional centered, self-similar Gaussian process with covariance $\mathbb{E}[B_{s}^{(i)} B_{t}^{(j)}] = 1/2\delta_{i,j}(|s|^{2\alpha}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2009-03, Vol.37 (2), p.565-614
1. Verfasser: Unterberger, Jérémie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 2
container_start_page 565
container_title The Annals of probability
container_volume 37
creator Unterberger, Jérémie
description The d-dimensional fractional Brownian motion (FBM for short) $B_{t} = ((B_{t}^{(1)},..., B_{t}^{(d)}), t \in \mathbb{R})$ with Hurst exponent α, α ∊ (0, 1), is a d-dimensional centered, self-similar Gaussian process with covariance $\mathbb{E}[B_{s}^{(i)} B_{t}^{(j)}] = 1/2\delta_{i,j}(|s|^{2\alpha} + |t|^{2\alpha} - |t-s|^{2\alpha})$ . The long-standing problem of defining a stochastic integration with respect to FBM (and the related problem of solving stochastic differential equations driven by FBM) has been addressed successfully by several different methods, although in each case with a restriction on the range of either d or α. The case α = 1/2 corresponds to the usual stochastic integration with respect to Brownian motion, while most computations become singular when α gets under various threshhold values, due to the growing irregularity of the trajectories as α → 0. We provide here a new method valid for any d and for α > ¼ by constructing an approximation $\Gamma(\varepsilon)_{t}$ , ɛ → 0, of FBM which allows to define iterated integrals, and then applying the geometric rough path theory. The approximation relies on the definition of an analytic process $\Gamma_{z}$ on the cut plane z ∊ ℂ \ $\mathbb{R}$ of which FBM appears to be a boundary value, and allows to understand very precisely the well-known (see [5]) but as yet a little mysterious divergence of Lévy's area for α → 1/4.
doi_str_mv 10.1214/08-AOP413
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00147538v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30244293</jstor_id><sourcerecordid>30244293</sourcerecordid><originalsourceid>FETCH-LOGICAL-h211t-482300f9c5c69c03b2433e7b7073a7dcc40926e7633479720d7e0bf6d604614a3</originalsourceid><addsrcrecordid>eNo9jV1LwzAYRoMoOKcX_gAht17UvflY0ngh1LFZYWPDD_CupGlrO2ozmtSt_94OxasHDofzIHRN4I5QwicQBtF6wwk7QSNKRBiEin-cohGAIgGRKjxHF85tAUBIyUeof_XWlNr5yuCZrk1Xdw4XtsWLVhtf2UbX-LG1-6bSDV7ZI8H7ypc47lrn8fyws03eeBzjB0wm_B5H-MV2nyXe6EFa5b60GU57HA2h_ngyP_i8cUPmEp0Vunb51d-O0fti_jaLg-X66XkWLYOSEuIDHlIGUCgzNUIZYCnljOUylSCZlpkxHBQVuRSMcakkhUzmkBYiE8AF4ZqN0e1vt9R1smurL932idVVEkfL5MgACJdTFn6Twb35dbfO2_bfZkA5p4qxH2wuZ38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H &gt; 1/4: A Rough Path Method by Analytic Extension</title><source>JSTOR Mathematics &amp; Statistics</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR</source><creator>Unterberger, Jérémie</creator><creatorcontrib>Unterberger, Jérémie</creatorcontrib><description>The d-dimensional fractional Brownian motion (FBM for short) $B_{t} = ((B_{t}^{(1)},..., B_{t}^{(d)}), t \in \mathbb{R})$ with Hurst exponent α, α ∊ (0, 1), is a d-dimensional centered, self-similar Gaussian process with covariance $\mathbb{E}[B_{s}^{(i)} B_{t}^{(j)}] = 1/2\delta_{i,j}(|s|^{2\alpha} + |t|^{2\alpha} - |t-s|^{2\alpha})$ . The long-standing problem of defining a stochastic integration with respect to FBM (and the related problem of solving stochastic differential equations driven by FBM) has been addressed successfully by several different methods, although in each case with a restriction on the range of either d or α. The case α = 1/2 corresponds to the usual stochastic integration with respect to Brownian motion, while most computations become singular when α gets under various threshhold values, due to the growing irregularity of the trajectories as α → 0. We provide here a new method valid for any d and for α &gt; ¼ by constructing an approximation $\Gamma(\varepsilon)_{t}$ , ɛ → 0, of FBM which allows to define iterated integrals, and then applying the geometric rough path theory. The approximation relies on the definition of an analytic process $\Gamma_{z}$ on the cut plane z ∊ ℂ \ $\mathbb{R}$ of which FBM appears to be a boundary value, and allows to understand very precisely the well-known (see [5]) but as yet a little mysterious divergence of Lévy's area for α → 1/4.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/08-AOP413</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Approximation ; Boundary value problems ; Brownian motion ; Calculus ; Differential equations ; Hypergeometric functions ; Integration by parts ; Iterated integrals ; Mathematical integration ; Mathematics ; Probability ; Series convergence</subject><ispartof>The Annals of probability, 2009-03, Vol.37 (2), p.565-614</ispartof><rights>Copyright 2009 Institute of Mathematical Statistics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30244293$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30244293$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,833,886,27928,27929,58021,58025,58254,58258</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00147538$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Unterberger, Jérémie</creatorcontrib><title>Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H &gt; 1/4: A Rough Path Method by Analytic Extension</title><title>The Annals of probability</title><description>The d-dimensional fractional Brownian motion (FBM for short) $B_{t} = ((B_{t}^{(1)},..., B_{t}^{(d)}), t \in \mathbb{R})$ with Hurst exponent α, α ∊ (0, 1), is a d-dimensional centered, self-similar Gaussian process with covariance $\mathbb{E}[B_{s}^{(i)} B_{t}^{(j)}] = 1/2\delta_{i,j}(|s|^{2\alpha} + |t|^{2\alpha} - |t-s|^{2\alpha})$ . The long-standing problem of defining a stochastic integration with respect to FBM (and the related problem of solving stochastic differential equations driven by FBM) has been addressed successfully by several different methods, although in each case with a restriction on the range of either d or α. The case α = 1/2 corresponds to the usual stochastic integration with respect to Brownian motion, while most computations become singular when α gets under various threshhold values, due to the growing irregularity of the trajectories as α → 0. We provide here a new method valid for any d and for α &gt; ¼ by constructing an approximation $\Gamma(\varepsilon)_{t}$ , ɛ → 0, of FBM which allows to define iterated integrals, and then applying the geometric rough path theory. The approximation relies on the definition of an analytic process $\Gamma_{z}$ on the cut plane z ∊ ℂ \ $\mathbb{R}$ of which FBM appears to be a boundary value, and allows to understand very precisely the well-known (see [5]) but as yet a little mysterious divergence of Lévy's area for α → 1/4.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Brownian motion</subject><subject>Calculus</subject><subject>Differential equations</subject><subject>Hypergeometric functions</subject><subject>Integration by parts</subject><subject>Iterated integrals</subject><subject>Mathematical integration</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Series convergence</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9jV1LwzAYRoMoOKcX_gAht17UvflY0ngh1LFZYWPDD_CupGlrO2ozmtSt_94OxasHDofzIHRN4I5QwicQBtF6wwk7QSNKRBiEin-cohGAIgGRKjxHF85tAUBIyUeof_XWlNr5yuCZrk1Xdw4XtsWLVhtf2UbX-LG1-6bSDV7ZI8H7ypc47lrn8fyws03eeBzjB0wm_B5H-MV2nyXe6EFa5b60GU57HA2h_ngyP_i8cUPmEp0Vunb51d-O0fti_jaLg-X66XkWLYOSEuIDHlIGUCgzNUIZYCnljOUylSCZlpkxHBQVuRSMcakkhUzmkBYiE8AF4ZqN0e1vt9R1smurL932idVVEkfL5MgACJdTFn6Twb35dbfO2_bfZkA5p4qxH2wuZ38</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Unterberger, Jérémie</creator><general>Institute of Mathematical Statistics</general><scope>1XC</scope></search><sort><creationdate>20090301</creationdate><title>Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H &gt; 1/4: A Rough Path Method by Analytic Extension</title><author>Unterberger, Jérémie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h211t-482300f9c5c69c03b2433e7b7073a7dcc40926e7633479720d7e0bf6d604614a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Brownian motion</topic><topic>Calculus</topic><topic>Differential equations</topic><topic>Hypergeometric functions</topic><topic>Integration by parts</topic><topic>Iterated integrals</topic><topic>Mathematical integration</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Series convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unterberger, Jérémie</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unterberger, Jérémie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H &gt; 1/4: A Rough Path Method by Analytic Extension</atitle><jtitle>The Annals of probability</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>37</volume><issue>2</issue><spage>565</spage><epage>614</epage><pages>565-614</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>The d-dimensional fractional Brownian motion (FBM for short) $B_{t} = ((B_{t}^{(1)},..., B_{t}^{(d)}), t \in \mathbb{R})$ with Hurst exponent α, α ∊ (0, 1), is a d-dimensional centered, self-similar Gaussian process with covariance $\mathbb{E}[B_{s}^{(i)} B_{t}^{(j)}] = 1/2\delta_{i,j}(|s|^{2\alpha} + |t|^{2\alpha} - |t-s|^{2\alpha})$ . The long-standing problem of defining a stochastic integration with respect to FBM (and the related problem of solving stochastic differential equations driven by FBM) has been addressed successfully by several different methods, although in each case with a restriction on the range of either d or α. The case α = 1/2 corresponds to the usual stochastic integration with respect to Brownian motion, while most computations become singular when α gets under various threshhold values, due to the growing irregularity of the trajectories as α → 0. We provide here a new method valid for any d and for α &gt; ¼ by constructing an approximation $\Gamma(\varepsilon)_{t}$ , ɛ → 0, of FBM which allows to define iterated integrals, and then applying the geometric rough path theory. The approximation relies on the definition of an analytic process $\Gamma_{z}$ on the cut plane z ∊ ℂ \ $\mathbb{R}$ of which FBM appears to be a boundary value, and allows to understand very precisely the well-known (see [5]) but as yet a little mysterious divergence of Lévy's area for α → 1/4.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/08-AOP413</doi><tpages>50</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2009-03, Vol.37 (2), p.565-614
issn 0091-1798
2168-894X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00147538v1
source JSTOR Mathematics & Statistics; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR
subjects Approximation
Boundary value problems
Brownian motion
Calculus
Differential equations
Hypergeometric functions
Integration by parts
Iterated integrals
Mathematical integration
Mathematics
Probability
Series convergence
title Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H > 1/4: A Rough Path Method by Analytic Extension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Calculus%20for%20Fractional%20Brownian%20Motion%20with%20Hurst%20Exponent%20H%20%3E%201/4:%20A%20Rough%20Path%20Method%20by%20Analytic%20Extension&rft.jtitle=The%20Annals%20of%20probability&rft.au=Unterberger,%20J%C3%A9r%C3%A9mie&rft.date=2009-03-01&rft.volume=37&rft.issue=2&rft.spage=565&rft.epage=614&rft.pages=565-614&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/08-AOP413&rft_dat=%3Cjstor_hal_p%3E30244293%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=30244293&rfr_iscdi=true