Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H > 1/4: A Rough Path Method by Analytic Extension
The d-dimensional fractional Brownian motion (FBM for short) $B_{t} = ((B_{t}^{(1)},..., B_{t}^{(d)}), t \in \mathbb{R})$ with Hurst exponent α, α ∊ (0, 1), is a d-dimensional centered, self-similar Gaussian process with covariance $\mathbb{E}[B_{s}^{(i)} B_{t}^{(j)}] = 1/2\delta_{i,j}(|s|^{2\alpha}...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2009-03, Vol.37 (2), p.565-614 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 2 |
container_start_page | 565 |
container_title | The Annals of probability |
container_volume | 37 |
creator | Unterberger, Jérémie |
description | The d-dimensional fractional Brownian motion (FBM for short) $B_{t} = ((B_{t}^{(1)},..., B_{t}^{(d)}), t \in \mathbb{R})$ with Hurst exponent α, α ∊ (0, 1), is a d-dimensional centered, self-similar Gaussian process with covariance $\mathbb{E}[B_{s}^{(i)} B_{t}^{(j)}] = 1/2\delta_{i,j}(|s|^{2\alpha} + |t|^{2\alpha} - |t-s|^{2\alpha})$ . The long-standing problem of defining a stochastic integration with respect to FBM (and the related problem of solving stochastic differential equations driven by FBM) has been addressed successfully by several different methods, although in each case with a restriction on the range of either d or α. The case α = 1/2 corresponds to the usual stochastic integration with respect to Brownian motion, while most computations become singular when α gets under various threshhold values, due to the growing irregularity of the trajectories as α → 0. We provide here a new method valid for any d and for α > ¼ by constructing an approximation $\Gamma(\varepsilon)_{t}$ , ɛ → 0, of FBM which allows to define iterated integrals, and then applying the geometric rough path theory. The approximation relies on the definition of an analytic process $\Gamma_{z}$ on the cut plane z ∊ ℂ \ $\mathbb{R}$ of which FBM appears to be a boundary value, and allows to understand very precisely the well-known (see [5]) but as yet a little mysterious divergence of Lévy's area for α → 1/4. |
doi_str_mv | 10.1214/08-AOP413 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00147538v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30244293</jstor_id><sourcerecordid>30244293</sourcerecordid><originalsourceid>FETCH-LOGICAL-h211t-482300f9c5c69c03b2433e7b7073a7dcc40926e7633479720d7e0bf6d604614a3</originalsourceid><addsrcrecordid>eNo9jV1LwzAYRoMoOKcX_gAht17UvflY0ngh1LFZYWPDD_CupGlrO2ozmtSt_94OxasHDofzIHRN4I5QwicQBtF6wwk7QSNKRBiEin-cohGAIgGRKjxHF85tAUBIyUeof_XWlNr5yuCZrk1Xdw4XtsWLVhtf2UbX-LG1-6bSDV7ZI8H7ypc47lrn8fyws03eeBzjB0wm_B5H-MV2nyXe6EFa5b60GU57HA2h_ngyP_i8cUPmEp0Vunb51d-O0fti_jaLg-X66XkWLYOSEuIDHlIGUCgzNUIZYCnljOUylSCZlpkxHBQVuRSMcakkhUzmkBYiE8AF4ZqN0e1vt9R1smurL932idVVEkfL5MgACJdTFn6Twb35dbfO2_bfZkA5p4qxH2wuZ38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H > 1/4: A Rough Path Method by Analytic Extension</title><source>JSTOR Mathematics & Statistics</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR</source><creator>Unterberger, Jérémie</creator><creatorcontrib>Unterberger, Jérémie</creatorcontrib><description>The d-dimensional fractional Brownian motion (FBM for short) $B_{t} = ((B_{t}^{(1)},..., B_{t}^{(d)}), t \in \mathbb{R})$ with Hurst exponent α, α ∊ (0, 1), is a d-dimensional centered, self-similar Gaussian process with covariance $\mathbb{E}[B_{s}^{(i)} B_{t}^{(j)}] = 1/2\delta_{i,j}(|s|^{2\alpha} + |t|^{2\alpha} - |t-s|^{2\alpha})$ . The long-standing problem of defining a stochastic integration with respect to FBM (and the related problem of solving stochastic differential equations driven by FBM) has been addressed successfully by several different methods, although in each case with a restriction on the range of either d or α. The case α = 1/2 corresponds to the usual stochastic integration with respect to Brownian motion, while most computations become singular when α gets under various threshhold values, due to the growing irregularity of the trajectories as α → 0. We provide here a new method valid for any d and for α > ¼ by constructing an approximation $\Gamma(\varepsilon)_{t}$ , ɛ → 0, of FBM which allows to define iterated integrals, and then applying the geometric rough path theory. The approximation relies on the definition of an analytic process $\Gamma_{z}$ on the cut plane z ∊ ℂ \ $\mathbb{R}$ of which FBM appears to be a boundary value, and allows to understand very precisely the well-known (see [5]) but as yet a little mysterious divergence of Lévy's area for α → 1/4.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/08-AOP413</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Approximation ; Boundary value problems ; Brownian motion ; Calculus ; Differential equations ; Hypergeometric functions ; Integration by parts ; Iterated integrals ; Mathematical integration ; Mathematics ; Probability ; Series convergence</subject><ispartof>The Annals of probability, 2009-03, Vol.37 (2), p.565-614</ispartof><rights>Copyright 2009 Institute of Mathematical Statistics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30244293$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30244293$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,833,886,27928,27929,58021,58025,58254,58258</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00147538$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Unterberger, Jérémie</creatorcontrib><title>Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H > 1/4: A Rough Path Method by Analytic Extension</title><title>The Annals of probability</title><description>The d-dimensional fractional Brownian motion (FBM for short) $B_{t} = ((B_{t}^{(1)},..., B_{t}^{(d)}), t \in \mathbb{R})$ with Hurst exponent α, α ∊ (0, 1), is a d-dimensional centered, self-similar Gaussian process with covariance $\mathbb{E}[B_{s}^{(i)} B_{t}^{(j)}] = 1/2\delta_{i,j}(|s|^{2\alpha} + |t|^{2\alpha} - |t-s|^{2\alpha})$ . The long-standing problem of defining a stochastic integration with respect to FBM (and the related problem of solving stochastic differential equations driven by FBM) has been addressed successfully by several different methods, although in each case with a restriction on the range of either d or α. The case α = 1/2 corresponds to the usual stochastic integration with respect to Brownian motion, while most computations become singular when α gets under various threshhold values, due to the growing irregularity of the trajectories as α → 0. We provide here a new method valid for any d and for α > ¼ by constructing an approximation $\Gamma(\varepsilon)_{t}$ , ɛ → 0, of FBM which allows to define iterated integrals, and then applying the geometric rough path theory. The approximation relies on the definition of an analytic process $\Gamma_{z}$ on the cut plane z ∊ ℂ \ $\mathbb{R}$ of which FBM appears to be a boundary value, and allows to understand very precisely the well-known (see [5]) but as yet a little mysterious divergence of Lévy's area for α → 1/4.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Brownian motion</subject><subject>Calculus</subject><subject>Differential equations</subject><subject>Hypergeometric functions</subject><subject>Integration by parts</subject><subject>Iterated integrals</subject><subject>Mathematical integration</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Series convergence</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9jV1LwzAYRoMoOKcX_gAht17UvflY0ngh1LFZYWPDD_CupGlrO2ozmtSt_94OxasHDofzIHRN4I5QwicQBtF6wwk7QSNKRBiEin-cohGAIgGRKjxHF85tAUBIyUeof_XWlNr5yuCZrk1Xdw4XtsWLVhtf2UbX-LG1-6bSDV7ZI8H7ypc47lrn8fyws03eeBzjB0wm_B5H-MV2nyXe6EFa5b60GU57HA2h_ngyP_i8cUPmEp0Vunb51d-O0fti_jaLg-X66XkWLYOSEuIDHlIGUCgzNUIZYCnljOUylSCZlpkxHBQVuRSMcakkhUzmkBYiE8AF4ZqN0e1vt9R1smurL932idVVEkfL5MgACJdTFn6Twb35dbfO2_bfZkA5p4qxH2wuZ38</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Unterberger, Jérémie</creator><general>Institute of Mathematical Statistics</general><scope>1XC</scope></search><sort><creationdate>20090301</creationdate><title>Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H > 1/4: A Rough Path Method by Analytic Extension</title><author>Unterberger, Jérémie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h211t-482300f9c5c69c03b2433e7b7073a7dcc40926e7633479720d7e0bf6d604614a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Brownian motion</topic><topic>Calculus</topic><topic>Differential equations</topic><topic>Hypergeometric functions</topic><topic>Integration by parts</topic><topic>Iterated integrals</topic><topic>Mathematical integration</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Series convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unterberger, Jérémie</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unterberger, Jérémie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H > 1/4: A Rough Path Method by Analytic Extension</atitle><jtitle>The Annals of probability</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>37</volume><issue>2</issue><spage>565</spage><epage>614</epage><pages>565-614</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>The d-dimensional fractional Brownian motion (FBM for short) $B_{t} = ((B_{t}^{(1)},..., B_{t}^{(d)}), t \in \mathbb{R})$ with Hurst exponent α, α ∊ (0, 1), is a d-dimensional centered, self-similar Gaussian process with covariance $\mathbb{E}[B_{s}^{(i)} B_{t}^{(j)}] = 1/2\delta_{i,j}(|s|^{2\alpha} + |t|^{2\alpha} - |t-s|^{2\alpha})$ . The long-standing problem of defining a stochastic integration with respect to FBM (and the related problem of solving stochastic differential equations driven by FBM) has been addressed successfully by several different methods, although in each case with a restriction on the range of either d or α. The case α = 1/2 corresponds to the usual stochastic integration with respect to Brownian motion, while most computations become singular when α gets under various threshhold values, due to the growing irregularity of the trajectories as α → 0. We provide here a new method valid for any d and for α > ¼ by constructing an approximation $\Gamma(\varepsilon)_{t}$ , ɛ → 0, of FBM which allows to define iterated integrals, and then applying the geometric rough path theory. The approximation relies on the definition of an analytic process $\Gamma_{z}$ on the cut plane z ∊ ℂ \ $\mathbb{R}$ of which FBM appears to be a boundary value, and allows to understand very precisely the well-known (see [5]) but as yet a little mysterious divergence of Lévy's area for α → 1/4.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/08-AOP413</doi><tpages>50</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2009-03, Vol.37 (2), p.565-614 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00147538v1 |
source | JSTOR Mathematics & Statistics; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR |
subjects | Approximation Boundary value problems Brownian motion Calculus Differential equations Hypergeometric functions Integration by parts Iterated integrals Mathematical integration Mathematics Probability Series convergence |
title | Stochastic Calculus for Fractional Brownian Motion with Hurst Exponent H > 1/4: A Rough Path Method by Analytic Extension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Calculus%20for%20Fractional%20Brownian%20Motion%20with%20Hurst%20Exponent%20H%20%3E%201/4:%20A%20Rough%20Path%20Method%20by%20Analytic%20Extension&rft.jtitle=The%20Annals%20of%20probability&rft.au=Unterberger,%20J%C3%A9r%C3%A9mie&rft.date=2009-03-01&rft.volume=37&rft.issue=2&rft.spage=565&rft.epage=614&rft.pages=565-614&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/08-AOP413&rft_dat=%3Cjstor_hal_p%3E30244293%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=30244293&rfr_iscdi=true |