Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network

The most extensive set of free tropospheric ozone measurements ever compiled across midlatitude North America was measured with daily ozonesondes, commercial aircraft and a lidar at 14 sites during July‐August 2004. The model estimated stratospheric ozone was subtracted from all profiles, leaving a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. Atmospheres 2006-12, Vol.111 (D24), p.n/a
Hauptverfasser: Cooper, O. R., Stohl, A., Trainer, M., Thompson, A. M., Witte, J. C., Oltmans, S. J., Morris, G., Pickering, K. E., Crawford, J. H., Chen, G., Cohen, R. C., Bertram, T. H., Wooldridge, P., Perring, A., Brune, W. H., Merrill, J., Moody, J. L., Tarasick, D., Nédélec, P., Forbes, G., Newchurch, M. J., Schmidlin, F. J., Johnson, B. J., Turquety, S., Baughcum, S. L., Ren, X., Fehsenfeld, F. C., Meagher, J. F., Spichtinger, N., Brown, C. C., McKeen, S. A., McDermid, I. S., Leblanc, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D24
container_start_page
container_title Journal of Geophysical Research. D. Atmospheres
container_volume 111
creator Cooper, O. R.
Stohl, A.
Trainer, M.
Thompson, A. M.
Witte, J. C.
Oltmans, S. J.
Morris, G.
Pickering, K. E.
Crawford, J. H.
Chen, G.
Cohen, R. C.
Bertram, T. H.
Wooldridge, P.
Perring, A.
Brune, W. H.
Merrill, J.
Moody, J. L.
Tarasick, D.
Nédélec, P.
Forbes, G.
Newchurch, M. J.
Schmidlin, F. J.
Johnson, B. J.
Turquety, S.
Baughcum, S. L.
Ren, X.
Fehsenfeld, F. C.
Meagher, J. F.
Spichtinger, N.
Brown, C. C.
McKeen, S. A.
McDermid, I. S.
Leblanc, T.
description The most extensive set of free tropospheric ozone measurements ever compiled across midlatitude North America was measured with daily ozonesondes, commercial aircraft and a lidar at 14 sites during July‐August 2004. The model estimated stratospheric ozone was subtracted from all profiles, leaving a tropospheric residual ozone. On average the upper troposphere above midlatitude eastern North America contained 15 ppbv more tropospheric residual ozone than the more polluted layer between the surface and 2 km above sea level. Lowest ozone values in the upper troposphere were found above the two upwind sites in California. The upper troposphere above midlatitude eastern North America contained 16 ppbv more tropospheric residual ozone than the upper troposphere above three upwind sites, with the greatest enhancement above Houston, Texas, at 24 ppbv. Upper tropospheric CO measurements above east Texas show no statistically significant enhancement compared to west coast measurements, arguing against a strong influence from fresh surface anthropogenic emissions to the upper troposphere above Texas where the ozone enhancement is greatest. Vertical mixing of ozone from the boundary layer to the upper troposphere can only account for 2 ppbv of the 16 ppbv ozone enhancement above eastern North America; therefore the remaining 14 ppbv must be the result of in situ ozone production. The transport of NOx tracers from North American anthropogenic, biogenic, biomass burning, and lightning emissions was simulated for the upper troposphere of North America with a particle dispersion model. Additional box model calculations suggest the 24 ppbv ozone enhancement above Houston can be produced over a 10 day period from oxidation reactions of lightning NOx and background mixing ratios of CO and CH4. Overall, we estimate that 69–84% (11–13 ppbv) of the 16 ppbv ozone enhancement above eastern North America is due to in situ ozone production from lightning NOx with the remainder due to transport of ozone from the surface or in situ ozone production from other sources of NOx.
doi_str_mv 10.1029/2006JD007306
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00144998v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21036261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5162-e022a1eb76c2d256200cba64153da1213df4706a072f3fde3a08022707aa54573</originalsourceid><addsrcrecordid>eNp9kcGO0zAQhiMEEtWyNx7AF5CQCIztxGm5VS10W5V2xYKQuFjTZLI1m8RZO-myPAzPikOrhRO-jDX6_n80_0TRcw5vOIjJWwGgVnOATIJ6FI0ET1UsBIjH0Qh4Mo5BiOxpdO79dwgvSVUCfBT9WqO7Jta3LTnWOdta3-7JmZzZn7YhRs0em5xqajrPcGcPxGpTVNiZri-Ibazr9mxaDwpkRe9Mc818X4fGO7ZsmA8Yo4MpKJiw0tmadXtiy-3mimFTsI_bb9Pl7DSrJvS9-zOLNdTdWXfzLHpSYuXp_FTPoi8f3n-eXcTr7WI5m67jPOVKxBSWQ067TOWiEKkKWeQ7VAlPZYFccFmUSQYKIROlLAuSCOMhD8gQ0yTN5Fn06ui7x0q3ztTo7rVFoy-maz30IGSYTCbjAw_syyPbOnvbk-90bXxOVYUN2d5rwUEqoQbw9RHMnfXeUfngzEEPN9P_3izgL06-6HOsSheCN_6vZpxkEwAZOHnk7kxF9__11KvFpzkPHxFU8VFlfEc_HlTobrTKZJbqr5uFXl1ONvOry1Qr-RsH9rQT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21036261</pqid></control><display><type>article</type><title>Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Cooper, O. R. ; Stohl, A. ; Trainer, M. ; Thompson, A. M. ; Witte, J. C. ; Oltmans, S. J. ; Morris, G. ; Pickering, K. E. ; Crawford, J. H. ; Chen, G. ; Cohen, R. C. ; Bertram, T. H. ; Wooldridge, P. ; Perring, A. ; Brune, W. H. ; Merrill, J. ; Moody, J. L. ; Tarasick, D. ; Nédélec, P. ; Forbes, G. ; Newchurch, M. J. ; Schmidlin, F. J. ; Johnson, B. J. ; Turquety, S. ; Baughcum, S. L. ; Ren, X. ; Fehsenfeld, F. C. ; Meagher, J. F. ; Spichtinger, N. ; Brown, C. C. ; McKeen, S. A. ; McDermid, I. S. ; Leblanc, T.</creator><creatorcontrib>Cooper, O. R. ; Stohl, A. ; Trainer, M. ; Thompson, A. M. ; Witte, J. C. ; Oltmans, S. J. ; Morris, G. ; Pickering, K. E. ; Crawford, J. H. ; Chen, G. ; Cohen, R. C. ; Bertram, T. H. ; Wooldridge, P. ; Perring, A. ; Brune, W. H. ; Merrill, J. ; Moody, J. L. ; Tarasick, D. ; Nédélec, P. ; Forbes, G. ; Newchurch, M. J. ; Schmidlin, F. J. ; Johnson, B. J. ; Turquety, S. ; Baughcum, S. L. ; Ren, X. ; Fehsenfeld, F. C. ; Meagher, J. F. ; Spichtinger, N. ; Brown, C. C. ; McKeen, S. A. ; McDermid, I. S. ; Leblanc, T.</creatorcontrib><description>The most extensive set of free tropospheric ozone measurements ever compiled across midlatitude North America was measured with daily ozonesondes, commercial aircraft and a lidar at 14 sites during July‐August 2004. The model estimated stratospheric ozone was subtracted from all profiles, leaving a tropospheric residual ozone. On average the upper troposphere above midlatitude eastern North America contained 15 ppbv more tropospheric residual ozone than the more polluted layer between the surface and 2 km above sea level. Lowest ozone values in the upper troposphere were found above the two upwind sites in California. The upper troposphere above midlatitude eastern North America contained 16 ppbv more tropospheric residual ozone than the upper troposphere above three upwind sites, with the greatest enhancement above Houston, Texas, at 24 ppbv. Upper tropospheric CO measurements above east Texas show no statistically significant enhancement compared to west coast measurements, arguing against a strong influence from fresh surface anthropogenic emissions to the upper troposphere above Texas where the ozone enhancement is greatest. Vertical mixing of ozone from the boundary layer to the upper troposphere can only account for 2 ppbv of the 16 ppbv ozone enhancement above eastern North America; therefore the remaining 14 ppbv must be the result of in situ ozone production. The transport of NOx tracers from North American anthropogenic, biogenic, biomass burning, and lightning emissions was simulated for the upper troposphere of North America with a particle dispersion model. Additional box model calculations suggest the 24 ppbv ozone enhancement above Houston can be produced over a 10 day period from oxidation reactions of lightning NOx and background mixing ratios of CO and CH4. Overall, we estimate that 69–84% (11–13 ppbv) of the 16 ppbv ozone enhancement above eastern North America is due to in situ ozone production from lightning NOx with the remainder due to transport of ozone from the surface or in situ ozone production from other sources of NOx.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2006JD007306</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Atmospheric and Oceanic Physics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; lightning ; ozone ; Physics ; transport</subject><ispartof>Journal of Geophysical Research. D. Atmospheres, 2006-12, Vol.111 (D24), p.n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5162-e022a1eb76c2d256200cba64153da1213df4706a072f3fde3a08022707aa54573</citedby><cites>FETCH-LOGICAL-c5162-e022a1eb76c2d256200cba64153da1213df4706a072f3fde3a08022707aa54573</cites><orcidid>0000-0002-0398-547X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2006JD007306$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2006JD007306$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11494,27903,27904,45553,45554,46388,46447,46812,46871</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18479003$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00144998$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, O. R.</creatorcontrib><creatorcontrib>Stohl, A.</creatorcontrib><creatorcontrib>Trainer, M.</creatorcontrib><creatorcontrib>Thompson, A. M.</creatorcontrib><creatorcontrib>Witte, J. C.</creatorcontrib><creatorcontrib>Oltmans, S. J.</creatorcontrib><creatorcontrib>Morris, G.</creatorcontrib><creatorcontrib>Pickering, K. E.</creatorcontrib><creatorcontrib>Crawford, J. H.</creatorcontrib><creatorcontrib>Chen, G.</creatorcontrib><creatorcontrib>Cohen, R. C.</creatorcontrib><creatorcontrib>Bertram, T. H.</creatorcontrib><creatorcontrib>Wooldridge, P.</creatorcontrib><creatorcontrib>Perring, A.</creatorcontrib><creatorcontrib>Brune, W. H.</creatorcontrib><creatorcontrib>Merrill, J.</creatorcontrib><creatorcontrib>Moody, J. L.</creatorcontrib><creatorcontrib>Tarasick, D.</creatorcontrib><creatorcontrib>Nédélec, P.</creatorcontrib><creatorcontrib>Forbes, G.</creatorcontrib><creatorcontrib>Newchurch, M. J.</creatorcontrib><creatorcontrib>Schmidlin, F. J.</creatorcontrib><creatorcontrib>Johnson, B. J.</creatorcontrib><creatorcontrib>Turquety, S.</creatorcontrib><creatorcontrib>Baughcum, S. L.</creatorcontrib><creatorcontrib>Ren, X.</creatorcontrib><creatorcontrib>Fehsenfeld, F. C.</creatorcontrib><creatorcontrib>Meagher, J. F.</creatorcontrib><creatorcontrib>Spichtinger, N.</creatorcontrib><creatorcontrib>Brown, C. C.</creatorcontrib><creatorcontrib>McKeen, S. A.</creatorcontrib><creatorcontrib>McDermid, I. S.</creatorcontrib><creatorcontrib>Leblanc, T.</creatorcontrib><title>Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network</title><title>Journal of Geophysical Research. D. Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>The most extensive set of free tropospheric ozone measurements ever compiled across midlatitude North America was measured with daily ozonesondes, commercial aircraft and a lidar at 14 sites during July‐August 2004. The model estimated stratospheric ozone was subtracted from all profiles, leaving a tropospheric residual ozone. On average the upper troposphere above midlatitude eastern North America contained 15 ppbv more tropospheric residual ozone than the more polluted layer between the surface and 2 km above sea level. Lowest ozone values in the upper troposphere were found above the two upwind sites in California. The upper troposphere above midlatitude eastern North America contained 16 ppbv more tropospheric residual ozone than the upper troposphere above three upwind sites, with the greatest enhancement above Houston, Texas, at 24 ppbv. Upper tropospheric CO measurements above east Texas show no statistically significant enhancement compared to west coast measurements, arguing against a strong influence from fresh surface anthropogenic emissions to the upper troposphere above Texas where the ozone enhancement is greatest. Vertical mixing of ozone from the boundary layer to the upper troposphere can only account for 2 ppbv of the 16 ppbv ozone enhancement above eastern North America; therefore the remaining 14 ppbv must be the result of in situ ozone production. The transport of NOx tracers from North American anthropogenic, biogenic, biomass burning, and lightning emissions was simulated for the upper troposphere of North America with a particle dispersion model. Additional box model calculations suggest the 24 ppbv ozone enhancement above Houston can be produced over a 10 day period from oxidation reactions of lightning NOx and background mixing ratios of CO and CH4. Overall, we estimate that 69–84% (11–13 ppbv) of the 16 ppbv ozone enhancement above eastern North America is due to in situ ozone production from lightning NOx with the remainder due to transport of ozone from the surface or in situ ozone production from other sources of NOx.</description><subject>Atmospheric and Oceanic Physics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>lightning</subject><subject>ozone</subject><subject>Physics</subject><subject>transport</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kcGO0zAQhiMEEtWyNx7AF5CQCIztxGm5VS10W5V2xYKQuFjTZLI1m8RZO-myPAzPikOrhRO-jDX6_n80_0TRcw5vOIjJWwGgVnOATIJ6FI0ET1UsBIjH0Qh4Mo5BiOxpdO79dwgvSVUCfBT9WqO7Jta3LTnWOdta3-7JmZzZn7YhRs0em5xqajrPcGcPxGpTVNiZri-Ibazr9mxaDwpkRe9Mc818X4fGO7ZsmA8Yo4MpKJiw0tmadXtiy-3mimFTsI_bb9Pl7DSrJvS9-zOLNdTdWXfzLHpSYuXp_FTPoi8f3n-eXcTr7WI5m67jPOVKxBSWQ067TOWiEKkKWeQ7VAlPZYFccFmUSQYKIROlLAuSCOMhD8gQ0yTN5Fn06ui7x0q3ztTo7rVFoy-maz30IGSYTCbjAw_syyPbOnvbk-90bXxOVYUN2d5rwUEqoQbw9RHMnfXeUfngzEEPN9P_3izgL06-6HOsSheCN_6vZpxkEwAZOHnk7kxF9__11KvFpzkPHxFU8VFlfEc_HlTobrTKZJbqr5uFXl1ONvOry1Qr-RsH9rQT</recordid><startdate>20061227</startdate><enddate>20061227</enddate><creator>Cooper, O. R.</creator><creator>Stohl, A.</creator><creator>Trainer, M.</creator><creator>Thompson, A. M.</creator><creator>Witte, J. C.</creator><creator>Oltmans, S. J.</creator><creator>Morris, G.</creator><creator>Pickering, K. E.</creator><creator>Crawford, J. H.</creator><creator>Chen, G.</creator><creator>Cohen, R. C.</creator><creator>Bertram, T. H.</creator><creator>Wooldridge, P.</creator><creator>Perring, A.</creator><creator>Brune, W. H.</creator><creator>Merrill, J.</creator><creator>Moody, J. L.</creator><creator>Tarasick, D.</creator><creator>Nédélec, P.</creator><creator>Forbes, G.</creator><creator>Newchurch, M. J.</creator><creator>Schmidlin, F. J.</creator><creator>Johnson, B. J.</creator><creator>Turquety, S.</creator><creator>Baughcum, S. L.</creator><creator>Ren, X.</creator><creator>Fehsenfeld, F. C.</creator><creator>Meagher, J. F.</creator><creator>Spichtinger, N.</creator><creator>Brown, C. C.</creator><creator>McKeen, S. A.</creator><creator>McDermid, I. S.</creator><creator>Leblanc, T.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0398-547X</orcidid></search><sort><creationdate>20061227</creationdate><title>Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network</title><author>Cooper, O. R. ; Stohl, A. ; Trainer, M. ; Thompson, A. M. ; Witte, J. C. ; Oltmans, S. J. ; Morris, G. ; Pickering, K. E. ; Crawford, J. H. ; Chen, G. ; Cohen, R. C. ; Bertram, T. H. ; Wooldridge, P. ; Perring, A. ; Brune, W. H. ; Merrill, J. ; Moody, J. L. ; Tarasick, D. ; Nédélec, P. ; Forbes, G. ; Newchurch, M. J. ; Schmidlin, F. J. ; Johnson, B. J. ; Turquety, S. ; Baughcum, S. L. ; Ren, X. ; Fehsenfeld, F. C. ; Meagher, J. F. ; Spichtinger, N. ; Brown, C. C. ; McKeen, S. A. ; McDermid, I. S. ; Leblanc, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5162-e022a1eb76c2d256200cba64153da1213df4706a072f3fde3a08022707aa54573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Atmospheric and Oceanic Physics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>lightning</topic><topic>ozone</topic><topic>Physics</topic><topic>transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, O. R.</creatorcontrib><creatorcontrib>Stohl, A.</creatorcontrib><creatorcontrib>Trainer, M.</creatorcontrib><creatorcontrib>Thompson, A. M.</creatorcontrib><creatorcontrib>Witte, J. C.</creatorcontrib><creatorcontrib>Oltmans, S. J.</creatorcontrib><creatorcontrib>Morris, G.</creatorcontrib><creatorcontrib>Pickering, K. E.</creatorcontrib><creatorcontrib>Crawford, J. H.</creatorcontrib><creatorcontrib>Chen, G.</creatorcontrib><creatorcontrib>Cohen, R. C.</creatorcontrib><creatorcontrib>Bertram, T. H.</creatorcontrib><creatorcontrib>Wooldridge, P.</creatorcontrib><creatorcontrib>Perring, A.</creatorcontrib><creatorcontrib>Brune, W. H.</creatorcontrib><creatorcontrib>Merrill, J.</creatorcontrib><creatorcontrib>Moody, J. L.</creatorcontrib><creatorcontrib>Tarasick, D.</creatorcontrib><creatorcontrib>Nédélec, P.</creatorcontrib><creatorcontrib>Forbes, G.</creatorcontrib><creatorcontrib>Newchurch, M. J.</creatorcontrib><creatorcontrib>Schmidlin, F. J.</creatorcontrib><creatorcontrib>Johnson, B. J.</creatorcontrib><creatorcontrib>Turquety, S.</creatorcontrib><creatorcontrib>Baughcum, S. L.</creatorcontrib><creatorcontrib>Ren, X.</creatorcontrib><creatorcontrib>Fehsenfeld, F. C.</creatorcontrib><creatorcontrib>Meagher, J. F.</creatorcontrib><creatorcontrib>Spichtinger, N.</creatorcontrib><creatorcontrib>Brown, C. C.</creatorcontrib><creatorcontrib>McKeen, S. A.</creatorcontrib><creatorcontrib>McDermid, I. S.</creatorcontrib><creatorcontrib>Leblanc, T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, O. R.</au><au>Stohl, A.</au><au>Trainer, M.</au><au>Thompson, A. M.</au><au>Witte, J. C.</au><au>Oltmans, S. J.</au><au>Morris, G.</au><au>Pickering, K. E.</au><au>Crawford, J. H.</au><au>Chen, G.</au><au>Cohen, R. C.</au><au>Bertram, T. H.</au><au>Wooldridge, P.</au><au>Perring, A.</au><au>Brune, W. H.</au><au>Merrill, J.</au><au>Moody, J. L.</au><au>Tarasick, D.</au><au>Nédélec, P.</au><au>Forbes, G.</au><au>Newchurch, M. J.</au><au>Schmidlin, F. J.</au><au>Johnson, B. J.</au><au>Turquety, S.</au><au>Baughcum, S. L.</au><au>Ren, X.</au><au>Fehsenfeld, F. C.</au><au>Meagher, J. F.</au><au>Spichtinger, N.</au><au>Brown, C. C.</au><au>McKeen, S. A.</au><au>McDermid, I. S.</au><au>Leblanc, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network</atitle><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2006-12-27</date><risdate>2006</risdate><volume>111</volume><issue>D24</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>The most extensive set of free tropospheric ozone measurements ever compiled across midlatitude North America was measured with daily ozonesondes, commercial aircraft and a lidar at 14 sites during July‐August 2004. The model estimated stratospheric ozone was subtracted from all profiles, leaving a tropospheric residual ozone. On average the upper troposphere above midlatitude eastern North America contained 15 ppbv more tropospheric residual ozone than the more polluted layer between the surface and 2 km above sea level. Lowest ozone values in the upper troposphere were found above the two upwind sites in California. The upper troposphere above midlatitude eastern North America contained 16 ppbv more tropospheric residual ozone than the upper troposphere above three upwind sites, with the greatest enhancement above Houston, Texas, at 24 ppbv. Upper tropospheric CO measurements above east Texas show no statistically significant enhancement compared to west coast measurements, arguing against a strong influence from fresh surface anthropogenic emissions to the upper troposphere above Texas where the ozone enhancement is greatest. Vertical mixing of ozone from the boundary layer to the upper troposphere can only account for 2 ppbv of the 16 ppbv ozone enhancement above eastern North America; therefore the remaining 14 ppbv must be the result of in situ ozone production. The transport of NOx tracers from North American anthropogenic, biogenic, biomass burning, and lightning emissions was simulated for the upper troposphere of North America with a particle dispersion model. Additional box model calculations suggest the 24 ppbv ozone enhancement above Houston can be produced over a 10 day period from oxidation reactions of lightning NOx and background mixing ratios of CO and CH4. Overall, we estimate that 69–84% (11–13 ppbv) of the 16 ppbv ozone enhancement above eastern North America is due to in situ ozone production from lightning NOx with the remainder due to transport of ozone from the surface or in situ ozone production from other sources of NOx.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2006JD007306</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0398-547X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. D. Atmospheres, 2006-12, Vol.111 (D24), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_hal_00144998v1
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Atmospheric and Oceanic Physics
Earth sciences
Earth, ocean, space
Exact sciences and technology
lightning
ozone
Physics
transport
title Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20upper%20tropospheric%20ozone%20enhancements%20above%20midlatitude%20North%20America%20during%20summer:%20In%20situ%20evidence%20from%20the%20IONS%20and%20MOZAIC%20ozone%20measurement%20network&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20Atmospheres&rft.au=Cooper,%20O.%20R.&rft.date=2006-12-27&rft.volume=111&rft.issue=D24&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2006JD007306&rft_dat=%3Cproquest_hal_p%3E21036261%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21036261&rft_id=info:pmid/&rfr_iscdi=true