Nuclear microprobe local hydrogen measurements in HTPC

High-temperature protonic conducting ceramics (HTPC) exhibit promising protonic conductivities at intermediate temperatures (400–600 °C), with a potential for a broad range of practical applications: electrolytes in electrochemical cells, batteries, sensors, etc. A balance still has to be found betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2006-10, Vol.177 (19), p.1655-1658
Hauptverfasser: Berger, P., Gallien, J.-P., Khodja, H., Daudin, L., Berger, M.-H., Sayir, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1658
container_issue 19
container_start_page 1655
container_title Solid state ionics
container_volume 177
creator Berger, P.
Gallien, J.-P.
Khodja, H.
Daudin, L.
Berger, M.-H.
Sayir, A.
description High-temperature protonic conducting ceramics (HTPC) exhibit promising protonic conductivities at intermediate temperatures (400–600 °C), with a potential for a broad range of practical applications: electrolytes in electrochemical cells, batteries, sensors, etc. A balance still has to be found between high protonic conductivity and chemical stability in a wet environment. In addition to bulk conductivity measurements, local investigations of protonic transport are recommended to evidence limitations induced by their microstructure, such as the role of grain boundaries or intergranular secondary phases. Methods for local hydrogen concentration measurement with spatial resolution at the micrometer level are scarce. The nuclear microanalysis meets this demand. We report here the first application of a nuclear microprobe technique to the study of HTPC perovskites, synthesized according to a melt-process developed at NASA GRC. Elastic Recoil Detection Analysis (ERDA) combined with Rutherford back-scattering (RBS) was first exploited for perovskites containing very low hydrogen contents. A less common method has been developed for thin samples which utilized 1H(p,p) 1H forward scattering with coincidence detection (ERCS). From the broad compositional and structural range of perovskites, we have limited our efforts to SrCe 0.9Y 0.1O 3− δ and Sr 3Ca 1+ x Nb 1.82O 9− δ , compositions which represent simple and complex perovskite structures, respectively.
doi_str_mv 10.1016/j.ssi.2006.05.050
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00144909v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273806003249</els_id><sourcerecordid>29523466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-d4027f96c2a9b39ebc1627ebedd549456d7f101a3cafee826957acb2a7718a4c3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcfwLc-CT605k-bNPg0hjphqA_zOaTprctom5m0g317Myo-ChcuXH7ncM9B6JbgjGDCH3ZZCDajGPMMF3HwGZqRUtBU8FKeo1lkREoFKy_RVQg7HEFW8hnib6NpQfuks8a7vXcVJK0zuk22x9q7L-iTDnQYPXTQDyGxfbLafCyv0UWj2wA3v3uOPp-fNstVun5_eV0u1qlhnA5pnWMqGskN1bJiEipDOBVQQV0XucwLXosmvq-Z0Q1ASbkshDYV1UKQUueGzdH95LvVrdp722l_VE5btVqs1emGMclzieWBRPZuYmOK7xHCoDobDLSt7sGNQVFZUJZzHkEygTFxCB6aP2eC1alNtVOxTXVqU-EiDo6ax0kDMe3BglfBWOgN1NaDGVTt7D_qH7_ufB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29523466</pqid></control><display><type>article</type><title>Nuclear microprobe local hydrogen measurements in HTPC</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Berger, P. ; Gallien, J.-P. ; Khodja, H. ; Daudin, L. ; Berger, M.-H. ; Sayir, A.</creator><creatorcontrib>Berger, P. ; Gallien, J.-P. ; Khodja, H. ; Daudin, L. ; Berger, M.-H. ; Sayir, A.</creatorcontrib><description>High-temperature protonic conducting ceramics (HTPC) exhibit promising protonic conductivities at intermediate temperatures (400–600 °C), with a potential for a broad range of practical applications: electrolytes in electrochemical cells, batteries, sensors, etc. A balance still has to be found between high protonic conductivity and chemical stability in a wet environment. In addition to bulk conductivity measurements, local investigations of protonic transport are recommended to evidence limitations induced by their microstructure, such as the role of grain boundaries or intergranular secondary phases. Methods for local hydrogen concentration measurement with spatial resolution at the micrometer level are scarce. The nuclear microanalysis meets this demand. We report here the first application of a nuclear microprobe technique to the study of HTPC perovskites, synthesized according to a melt-process developed at NASA GRC. Elastic Recoil Detection Analysis (ERDA) combined with Rutherford back-scattering (RBS) was first exploited for perovskites containing very low hydrogen contents. A less common method has been developed for thin samples which utilized 1H(p,p) 1H forward scattering with coincidence detection (ERCS). From the broad compositional and structural range of perovskites, we have limited our efforts to SrCe 0.9Y 0.1O 3− δ and Sr 3Ca 1+ x Nb 1.82O 9− δ , compositions which represent simple and complex perovskite structures, respectively.</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2006.05.050</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Condensed Matter ; Forward scattering ; Hydrogen ; Materials Science ; Nuclear microprobe ; Perovskite ; Physics</subject><ispartof>Solid state ionics, 2006-10, Vol.177 (19), p.1655-1658</ispartof><rights>2006 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-d4027f96c2a9b39ebc1627ebedd549456d7f101a3cafee826957acb2a7718a4c3</citedby><orcidid>0000-0001-8374-4539 ; 0000-0001-7819-5280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ssi.2006.05.050$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00144909$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berger, P.</creatorcontrib><creatorcontrib>Gallien, J.-P.</creatorcontrib><creatorcontrib>Khodja, H.</creatorcontrib><creatorcontrib>Daudin, L.</creatorcontrib><creatorcontrib>Berger, M.-H.</creatorcontrib><creatorcontrib>Sayir, A.</creatorcontrib><title>Nuclear microprobe local hydrogen measurements in HTPC</title><title>Solid state ionics</title><description>High-temperature protonic conducting ceramics (HTPC) exhibit promising protonic conductivities at intermediate temperatures (400–600 °C), with a potential for a broad range of practical applications: electrolytes in electrochemical cells, batteries, sensors, etc. A balance still has to be found between high protonic conductivity and chemical stability in a wet environment. In addition to bulk conductivity measurements, local investigations of protonic transport are recommended to evidence limitations induced by their microstructure, such as the role of grain boundaries or intergranular secondary phases. Methods for local hydrogen concentration measurement with spatial resolution at the micrometer level are scarce. The nuclear microanalysis meets this demand. We report here the first application of a nuclear microprobe technique to the study of HTPC perovskites, synthesized according to a melt-process developed at NASA GRC. Elastic Recoil Detection Analysis (ERDA) combined with Rutherford back-scattering (RBS) was first exploited for perovskites containing very low hydrogen contents. A less common method has been developed for thin samples which utilized 1H(p,p) 1H forward scattering with coincidence detection (ERCS). From the broad compositional and structural range of perovskites, we have limited our efforts to SrCe 0.9Y 0.1O 3− δ and Sr 3Ca 1+ x Nb 1.82O 9− δ , compositions which represent simple and complex perovskite structures, respectively.</description><subject>Condensed Matter</subject><subject>Forward scattering</subject><subject>Hydrogen</subject><subject>Materials Science</subject><subject>Nuclear microprobe</subject><subject>Perovskite</subject><subject>Physics</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcfwLc-CT605k-bNPg0hjphqA_zOaTprctom5m0g317Myo-ChcuXH7ncM9B6JbgjGDCH3ZZCDajGPMMF3HwGZqRUtBU8FKeo1lkREoFKy_RVQg7HEFW8hnib6NpQfuks8a7vXcVJK0zuk22x9q7L-iTDnQYPXTQDyGxfbLafCyv0UWj2wA3v3uOPp-fNstVun5_eV0u1qlhnA5pnWMqGskN1bJiEipDOBVQQV0XucwLXosmvq-Z0Q1ASbkshDYV1UKQUueGzdH95LvVrdp722l_VE5btVqs1emGMclzieWBRPZuYmOK7xHCoDobDLSt7sGNQVFZUJZzHkEygTFxCB6aP2eC1alNtVOxTXVqU-EiDo6ax0kDMe3BglfBWOgN1NaDGVTt7D_qH7_ufB0</recordid><startdate>20061015</startdate><enddate>20061015</enddate><creator>Berger, P.</creator><creator>Gallien, J.-P.</creator><creator>Khodja, H.</creator><creator>Daudin, L.</creator><creator>Berger, M.-H.</creator><creator>Sayir, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8374-4539</orcidid><orcidid>https://orcid.org/0000-0001-7819-5280</orcidid></search><sort><creationdate>20061015</creationdate><title>Nuclear microprobe local hydrogen measurements in HTPC</title><author>Berger, P. ; Gallien, J.-P. ; Khodja, H. ; Daudin, L. ; Berger, M.-H. ; Sayir, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-d4027f96c2a9b39ebc1627ebedd549456d7f101a3cafee826957acb2a7718a4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Condensed Matter</topic><topic>Forward scattering</topic><topic>Hydrogen</topic><topic>Materials Science</topic><topic>Nuclear microprobe</topic><topic>Perovskite</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, P.</creatorcontrib><creatorcontrib>Gallien, J.-P.</creatorcontrib><creatorcontrib>Khodja, H.</creatorcontrib><creatorcontrib>Daudin, L.</creatorcontrib><creatorcontrib>Berger, M.-H.</creatorcontrib><creatorcontrib>Sayir, A.</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, P.</au><au>Gallien, J.-P.</au><au>Khodja, H.</au><au>Daudin, L.</au><au>Berger, M.-H.</au><au>Sayir, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear microprobe local hydrogen measurements in HTPC</atitle><jtitle>Solid state ionics</jtitle><date>2006-10-15</date><risdate>2006</risdate><volume>177</volume><issue>19</issue><spage>1655</spage><epage>1658</epage><pages>1655-1658</pages><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>High-temperature protonic conducting ceramics (HTPC) exhibit promising protonic conductivities at intermediate temperatures (400–600 °C), with a potential for a broad range of practical applications: electrolytes in electrochemical cells, batteries, sensors, etc. A balance still has to be found between high protonic conductivity and chemical stability in a wet environment. In addition to bulk conductivity measurements, local investigations of protonic transport are recommended to evidence limitations induced by their microstructure, such as the role of grain boundaries or intergranular secondary phases. Methods for local hydrogen concentration measurement with spatial resolution at the micrometer level are scarce. The nuclear microanalysis meets this demand. We report here the first application of a nuclear microprobe technique to the study of HTPC perovskites, synthesized according to a melt-process developed at NASA GRC. Elastic Recoil Detection Analysis (ERDA) combined with Rutherford back-scattering (RBS) was first exploited for perovskites containing very low hydrogen contents. A less common method has been developed for thin samples which utilized 1H(p,p) 1H forward scattering with coincidence detection (ERCS). From the broad compositional and structural range of perovskites, we have limited our efforts to SrCe 0.9Y 0.1O 3− δ and Sr 3Ca 1+ x Nb 1.82O 9− δ , compositions which represent simple and complex perovskite structures, respectively.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2006.05.050</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8374-4539</orcidid><orcidid>https://orcid.org/0000-0001-7819-5280</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2006-10, Vol.177 (19), p.1655-1658
issn 0167-2738
1872-7689
language eng
recordid cdi_hal_primary_oai_HAL_hal_00144909v1
source Elsevier ScienceDirect Journals Complete
subjects Condensed Matter
Forward scattering
Hydrogen
Materials Science
Nuclear microprobe
Perovskite
Physics
title Nuclear microprobe local hydrogen measurements in HTPC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20microprobe%20local%20hydrogen%20measurements%20in%20HTPC&rft.jtitle=Solid%20state%20ionics&rft.au=Berger,%20P.&rft.date=2006-10-15&rft.volume=177&rft.issue=19&rft.spage=1655&rft.epage=1658&rft.pages=1655-1658&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2006.05.050&rft_dat=%3Cproquest_hal_p%3E29523466%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29523466&rft_id=info:pmid/&rft_els_id=S0167273806003249&rfr_iscdi=true