A synergetic approach for estimating the local direct aerosol forcing: Application to an urban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d'Emission (ESCOMPTE) experiment

A method dedicated to the investigation of direct radiative forcing of the main anthropogenic aerosol species (ammonium sulfate, black carbon, particulate organic matter) is presented. We computed the direct radiative aerosol forcing at the top of atmosphere (TOA), at the bottom of atmosphere (BOA),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2006-07, Vol.111 (D13), p.np-n/a
Hauptverfasser: Roger, J. C., Mallet, M., Dubuisson, P., Cachier, H., Vermote, E., Dubovik, O., Despiau, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D13
container_start_page np
container_title Journal of Geophysical Research
container_volume 111
creator Roger, J. C.
Mallet, M.
Dubuisson, P.
Cachier, H.
Vermote, E.
Dubovik, O.
Despiau, S.
description A method dedicated to the investigation of direct radiative forcing of the main anthropogenic aerosol species (ammonium sulfate, black carbon, particulate organic matter) is presented. We computed the direct radiative aerosol forcing at the top of atmosphere (TOA), at the bottom of atmosphere (BOA), and into the atmospheric layer (ATM). The methodology is based on chemical, photometric, and satellite measurements. We first determined the optical properties of the main aerosol species and then computed their direct radiative impact at local scale. The method was applied to a periurban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d'Emission experiment. Optical computations indicate that the single scattering albedo, for the total aerosol population in the external mixture, is equal to 0.83 ± 0.04 at 550 nm, indicative of a strong absorption of the solar radiation. At the same time the mean asymmetry parameter is equal to 0.59 ± 0.04, and the mean aerosol optical thickness is equal to 0.30 ± 0.02, at 550 nm. The anthropogenic urban aerosol layer reduces significantly the daily surface illumination (−24 W m−2 > ΔFBOA > −47.5 W m−2) by reflection to space (−6 W m−2 > ΔFTOA > −9 W m−2) and by absorption of the solar radiation into the atmosphere (17 W m−2 < ΔFATM < 39 W m−2). The available resulting energy in the atmospheric column heats the lowermost part of the atmosphere from 1.1°K d−1 to 2.8°K d−1. Our study shows that the black carbon particles have a large contribution to the BOA forcing (almost 50% of the total daily forcing), whereas the ammonium sulfate particles contribute only to about 10%. Conversely, the TOA daily forcing is mostly driven by the ammonium sulfate aerosol (around 50%).
doi_str_mv 10.1029/2005JD006361
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00138869v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1654667871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4838-63a06024274347cc69cbc2d494a6fe56ee11081b83fc837d2850e4d41d5a8da93</originalsourceid><addsrcrecordid>eNp9ks1y0zAQxz0MzJApvfEAugDtDAZ9WZa5ZdKQ0klp2obpUaPIm0bgWK5kQ8ITwXP0QXgVZFIKp-og7Uq__a-02iR5TvAbgmnxlmKcnRxhLJggj5IBJZlIKcX0cTLAhMsUU5o_TfZD-Izj4JngmAySX0MUtjX4a2itQbppvNNmhZbOIwitXevW1teoXQGqnNEVKq0H0yIN3gVX9ZyJwDs0bJrKmki7GrUO6Rp1fhHn764GVHb-r8p409z-9BZqAyh0Hl3aFlDjojVydeu1rUsfc0FAp668_dEbJaCZq6rujza0vT_3ug6N89F5NV7bEPqjg_Hl6Ox0Nh8fItg04O0a6vZZ8mSpqwD7d-te8un9eD46Tqdnkw-j4TQ1XDKZCqaxwJTTnDOeGyMKszC05AXXYgmZACAES7KQbGkky0sqMwy85KTMtCx1wfaSw53uSleqibm13yqnrToeTlW_hzFhUoriK4nsyx0bi33TxTKr-AQDVaVrcF1QlGAucSEiePAgSETGhchl3mu-3qEmfkzwsLy_BMGq7w_1f39E_MWdsg7xW5exnsaGfzESU1FkWeTYjvtmK9g-qKlOJhdHhHImY1S6i7Khhc19lPZflMhZnqmrjxM1ubooyOw8V-fsN5tr2w0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654667871</pqid></control><display><type>article</type><title>A synergetic approach for estimating the local direct aerosol forcing: Application to an urban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d'Emission (ESCOMPTE) experiment</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Roger, J. C. ; Mallet, M. ; Dubuisson, P. ; Cachier, H. ; Vermote, E. ; Dubovik, O. ; Despiau, S.</creator><creatorcontrib>Roger, J. C. ; Mallet, M. ; Dubuisson, P. ; Cachier, H. ; Vermote, E. ; Dubovik, O. ; Despiau, S.</creatorcontrib><description>A method dedicated to the investigation of direct radiative forcing of the main anthropogenic aerosol species (ammonium sulfate, black carbon, particulate organic matter) is presented. We computed the direct radiative aerosol forcing at the top of atmosphere (TOA), at the bottom of atmosphere (BOA), and into the atmospheric layer (ATM). The methodology is based on chemical, photometric, and satellite measurements. We first determined the optical properties of the main aerosol species and then computed their direct radiative impact at local scale. The method was applied to a periurban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d'Emission experiment. Optical computations indicate that the single scattering albedo, for the total aerosol population in the external mixture, is equal to 0.83 ± 0.04 at 550 nm, indicative of a strong absorption of the solar radiation. At the same time the mean asymmetry parameter is equal to 0.59 ± 0.04, and the mean aerosol optical thickness is equal to 0.30 ± 0.02, at 550 nm. The anthropogenic urban aerosol layer reduces significantly the daily surface illumination (−24 W m−2 &gt; ΔFBOA &gt; −47.5 W m−2) by reflection to space (−6 W m−2 &gt; ΔFTOA &gt; −9 W m−2) and by absorption of the solar radiation into the atmosphere (17 W m−2 &lt; ΔFATM &lt; 39 W m−2). The available resulting energy in the atmospheric column heats the lowermost part of the atmosphere from 1.1°K d−1 to 2.8°K d−1. Our study shows that the black carbon particles have a large contribution to the BOA forcing (almost 50% of the total daily forcing), whereas the ammonium sulfate particles contribute only to about 10%. Conversely, the TOA daily forcing is mostly driven by the ammonium sulfate aerosol (around 50%).</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2005JD006361</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>aerosols ; Atmospheric and Oceanic Physics ; Boa ; direct radiative impact ; Earth sciences ; Earth, ocean, space ; ESCOMPTE ; Exact sciences and technology ; Physics</subject><ispartof>Journal of Geophysical Research, 2006-07, Vol.111 (D13), p.np-n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4838-63a06024274347cc69cbc2d494a6fe56ee11081b83fc837d2850e4d41d5a8da93</citedby><cites>FETCH-LOGICAL-c4838-63a06024274347cc69cbc2d494a6fe56ee11081b83fc837d2850e4d41d5a8da93</cites><orcidid>0000-0001-7407-7658 ; 0000-0002-3119-1175 ; 0000-0003-3482-6460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005JD006361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005JD006361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18026955$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00138869$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roger, J. C.</creatorcontrib><creatorcontrib>Mallet, M.</creatorcontrib><creatorcontrib>Dubuisson, P.</creatorcontrib><creatorcontrib>Cachier, H.</creatorcontrib><creatorcontrib>Vermote, E.</creatorcontrib><creatorcontrib>Dubovik, O.</creatorcontrib><creatorcontrib>Despiau, S.</creatorcontrib><title>A synergetic approach for estimating the local direct aerosol forcing: Application to an urban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d'Emission (ESCOMPTE) experiment</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>A method dedicated to the investigation of direct radiative forcing of the main anthropogenic aerosol species (ammonium sulfate, black carbon, particulate organic matter) is presented. We computed the direct radiative aerosol forcing at the top of atmosphere (TOA), at the bottom of atmosphere (BOA), and into the atmospheric layer (ATM). The methodology is based on chemical, photometric, and satellite measurements. We first determined the optical properties of the main aerosol species and then computed their direct radiative impact at local scale. The method was applied to a periurban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d'Emission experiment. Optical computations indicate that the single scattering albedo, for the total aerosol population in the external mixture, is equal to 0.83 ± 0.04 at 550 nm, indicative of a strong absorption of the solar radiation. At the same time the mean asymmetry parameter is equal to 0.59 ± 0.04, and the mean aerosol optical thickness is equal to 0.30 ± 0.02, at 550 nm. The anthropogenic urban aerosol layer reduces significantly the daily surface illumination (−24 W m−2 &gt; ΔFBOA &gt; −47.5 W m−2) by reflection to space (−6 W m−2 &gt; ΔFTOA &gt; −9 W m−2) and by absorption of the solar radiation into the atmosphere (17 W m−2 &lt; ΔFATM &lt; 39 W m−2). The available resulting energy in the atmospheric column heats the lowermost part of the atmosphere from 1.1°K d−1 to 2.8°K d−1. Our study shows that the black carbon particles have a large contribution to the BOA forcing (almost 50% of the total daily forcing), whereas the ammonium sulfate particles contribute only to about 10%. Conversely, the TOA daily forcing is mostly driven by the ammonium sulfate aerosol (around 50%).</description><subject>aerosols</subject><subject>Atmospheric and Oceanic Physics</subject><subject>Boa</subject><subject>direct radiative impact</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>ESCOMPTE</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9ks1y0zAQxz0MzJApvfEAugDtDAZ9WZa5ZdKQ0klp2obpUaPIm0bgWK5kQ8ITwXP0QXgVZFIKp-og7Uq__a-02iR5TvAbgmnxlmKcnRxhLJggj5IBJZlIKcX0cTLAhMsUU5o_TfZD-Izj4JngmAySX0MUtjX4a2itQbppvNNmhZbOIwitXevW1teoXQGqnNEVKq0H0yIN3gVX9ZyJwDs0bJrKmki7GrUO6Rp1fhHn764GVHb-r8p409z-9BZqAyh0Hl3aFlDjojVydeu1rUsfc0FAp668_dEbJaCZq6rujza0vT_3ug6N89F5NV7bEPqjg_Hl6Ox0Nh8fItg04O0a6vZZ8mSpqwD7d-te8un9eD46Tqdnkw-j4TQ1XDKZCqaxwJTTnDOeGyMKszC05AXXYgmZACAES7KQbGkky0sqMwy85KTMtCx1wfaSw53uSleqibm13yqnrToeTlW_hzFhUoriK4nsyx0bi33TxTKr-AQDVaVrcF1QlGAucSEiePAgSETGhchl3mu-3qEmfkzwsLy_BMGq7w_1f39E_MWdsg7xW5exnsaGfzESU1FkWeTYjvtmK9g-qKlOJhdHhHImY1S6i7Khhc19lPZflMhZnqmrjxM1ubooyOw8V-fsN5tr2w0</recordid><startdate>20060716</startdate><enddate>20060716</enddate><creator>Roger, J. C.</creator><creator>Mallet, M.</creator><creator>Dubuisson, P.</creator><creator>Cachier, H.</creator><creator>Vermote, E.</creator><creator>Dubovik, O.</creator><creator>Despiau, S.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7407-7658</orcidid><orcidid>https://orcid.org/0000-0002-3119-1175</orcidid><orcidid>https://orcid.org/0000-0003-3482-6460</orcidid></search><sort><creationdate>20060716</creationdate><title>A synergetic approach for estimating the local direct aerosol forcing: Application to an urban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d'Emission (ESCOMPTE) experiment</title><author>Roger, J. C. ; Mallet, M. ; Dubuisson, P. ; Cachier, H. ; Vermote, E. ; Dubovik, O. ; Despiau, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4838-63a06024274347cc69cbc2d494a6fe56ee11081b83fc837d2850e4d41d5a8da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>aerosols</topic><topic>Atmospheric and Oceanic Physics</topic><topic>Boa</topic><topic>direct radiative impact</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>ESCOMPTE</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roger, J. C.</creatorcontrib><creatorcontrib>Mallet, M.</creatorcontrib><creatorcontrib>Dubuisson, P.</creatorcontrib><creatorcontrib>Cachier, H.</creatorcontrib><creatorcontrib>Vermote, E.</creatorcontrib><creatorcontrib>Dubovik, O.</creatorcontrib><creatorcontrib>Despiau, S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roger, J. C.</au><au>Mallet, M.</au><au>Dubuisson, P.</au><au>Cachier, H.</au><au>Vermote, E.</au><au>Dubovik, O.</au><au>Despiau, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A synergetic approach for estimating the local direct aerosol forcing: Application to an urban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d'Emission (ESCOMPTE) experiment</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2006-07-16</date><risdate>2006</risdate><volume>111</volume><issue>D13</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>A method dedicated to the investigation of direct radiative forcing of the main anthropogenic aerosol species (ammonium sulfate, black carbon, particulate organic matter) is presented. We computed the direct radiative aerosol forcing at the top of atmosphere (TOA), at the bottom of atmosphere (BOA), and into the atmospheric layer (ATM). The methodology is based on chemical, photometric, and satellite measurements. We first determined the optical properties of the main aerosol species and then computed their direct radiative impact at local scale. The method was applied to a periurban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d'Emission experiment. Optical computations indicate that the single scattering albedo, for the total aerosol population in the external mixture, is equal to 0.83 ± 0.04 at 550 nm, indicative of a strong absorption of the solar radiation. At the same time the mean asymmetry parameter is equal to 0.59 ± 0.04, and the mean aerosol optical thickness is equal to 0.30 ± 0.02, at 550 nm. The anthropogenic urban aerosol layer reduces significantly the daily surface illumination (−24 W m−2 &gt; ΔFBOA &gt; −47.5 W m−2) by reflection to space (−6 W m−2 &gt; ΔFTOA &gt; −9 W m−2) and by absorption of the solar radiation into the atmosphere (17 W m−2 &lt; ΔFATM &lt; 39 W m−2). The available resulting energy in the atmospheric column heats the lowermost part of the atmosphere from 1.1°K d−1 to 2.8°K d−1. Our study shows that the black carbon particles have a large contribution to the BOA forcing (almost 50% of the total daily forcing), whereas the ammonium sulfate particles contribute only to about 10%. Conversely, the TOA daily forcing is mostly driven by the ammonium sulfate aerosol (around 50%).</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005JD006361</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7407-7658</orcidid><orcidid>https://orcid.org/0000-0002-3119-1175</orcidid><orcidid>https://orcid.org/0000-0003-3482-6460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2006-07, Vol.111 (D13), p.np-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_hal_primary_oai_HAL_hal_00138869v1
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects aerosols
Atmospheric and Oceanic Physics
Boa
direct radiative impact
Earth sciences
Earth, ocean, space
ESCOMPTE
Exact sciences and technology
Physics
title A synergetic approach for estimating the local direct aerosol forcing: Application to an urban zone during the Expérience sur Site pour Contraindre les Modèles de Pollution et de Transport d'Emission (ESCOMPTE) experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20synergetic%20approach%20for%20estimating%20the%20local%20direct%20aerosol%20forcing:%20Application%20to%20an%20urban%20zone%20during%20the%20Exp%C3%A9rience%20sur%20Site%20pour%20Contraindre%20les%20Mod%C3%A8les%20de%20Pollution%20et%20de%20Transport%20d'Emission%20(ESCOMPTE)%20experiment&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Roger,%20J.%20C.&rft.date=2006-07-16&rft.volume=111&rft.issue=D13&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2005JD006361&rft_dat=%3Cproquest_hal_p%3E1654667871%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654667871&rft_id=info:pmid/&rfr_iscdi=true