On vertex algebra representations of the Schrödinger–Virasoro Lie algebra
The Schrödinger–Virasoro Lie algebra sv is an extension of the Virasoro Lie algebra by a nilpotent Lie algebra formed with a bosonic current of weight 3 2 and a bosonic current of weight 1. It is also a natural infinite-dimensional extension of the Schrödinger Lie algebra, which — leaving aside the...
Gespeichert in:
Veröffentlicht in: | Nuclear physics. B 2009-12, Vol.823 (3), p.320-371 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 371 |
---|---|
container_issue | 3 |
container_start_page | 320 |
container_title | Nuclear physics. B |
container_volume | 823 |
creator | Unterberger, Jérémie |
description | The Schrödinger–Virasoro Lie algebra
sv
is an extension of the Virasoro Lie algebra by a nilpotent Lie algebra formed with a bosonic current of weight
3
2
and a bosonic current of weight 1. It is also a natural infinite-dimensional extension of the Schrödinger Lie algebra, which — leaving aside the invariance under time-translation — has been proved to be a symmetry algebra for many statistical physics models undergoing a dynamics with dynamical exponent
z
=
2
.
We define in this article general Schrödinger–Virasoro primary fields by analogy with conformal field theory, characterized by a ‘spin’ index and a (non-relativistic) mass, and construct vertex algebra representations of
sv
out of a charged symplectic boson and a free boson and its associated vertex operators. We also compute two- and three-point functions of still conjectural massive fields that are defined by an analytic continuation with respect to a formal parameter. |
doi_str_mv | 10.1016/j.nuclphysb.2009.06.018 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00135660v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0550321309003332</els_id><sourcerecordid>S0550321309003332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d077b9495c7f1ab4cf5b3f63a1c1b928c9f2adfe88ebaacbd4197217244842ef3</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEqVwBrJlkeBH4jjLqgKKFKkLHlvLdsaNo5BUdqjojjtwFy7ATTgJqQrdMpuRRv_3S_MhdElwQjDh103SvZp2XW-DTijGRYJ5gok4QhMichaTjNNjNMFZhmNGCTtFZyE0eBzOxASVyy7agB_gLVLtCrRXkYe1hwDdoAbXdyHqbTTUED2Y2n99Vq5bgf9-_3h2XoXe91Hp4A89RydWtQEufvcUPd3ePM4Xcbm8u5_PytiwQgxxhfNcF2mRmdwSpVNjM80sZ4oYogsqTGGpqiwIAVopo6uUFDklOU1TkVKwbIqu9r21auXauxflt7JXTi5mpdzdMCYs4xxv6JjN91nj-xA82ANAsNwJlI08CJQ7gRJzOQocydmehPGVjQMvg3HQGaicBzPIqnf_dvwAy--AyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On vertex algebra representations of the Schrödinger–Virasoro Lie algebra</title><source>Elsevier ScienceDirect Journals</source><creator>Unterberger, Jérémie</creator><creatorcontrib>Unterberger, Jérémie</creatorcontrib><description>The Schrödinger–Virasoro Lie algebra
sv
is an extension of the Virasoro Lie algebra by a nilpotent Lie algebra formed with a bosonic current of weight
3
2
and a bosonic current of weight 1. It is also a natural infinite-dimensional extension of the Schrödinger Lie algebra, which — leaving aside the invariance under time-translation — has been proved to be a symmetry algebra for many statistical physics models undergoing a dynamics with dynamical exponent
z
=
2
.
We define in this article general Schrödinger–Virasoro primary fields by analogy with conformal field theory, characterized by a ‘spin’ index and a (non-relativistic) mass, and construct vertex algebra representations of
sv
out of a charged symplectic boson and a free boson and its associated vertex operators. We also compute two- and three-point functions of still conjectural massive fields that are defined by an analytic continuation with respect to a formal parameter.</description><identifier>ISSN: 0550-3213</identifier><identifier>EISSN: 1873-1562</identifier><identifier>DOI: 10.1016/j.nuclphysb.2009.06.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algebraic structure of integrable models ; Condensed Matter ; Conformal field-theory ; Correlation functions ; Infinite-dimensional Lie algebras ; Mathematical Physics ; Non-equilibrium statistical physics ; Physics ; Schrödinger-invariance ; Statistical Mechanics ; Supersymmetry</subject><ispartof>Nuclear physics. B, 2009-12, Vol.823 (3), p.320-371</ispartof><rights>2009 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d077b9495c7f1ab4cf5b3f63a1c1b928c9f2adfe88ebaacbd4197217244842ef3</citedby><cites>FETCH-LOGICAL-c398t-d077b9495c7f1ab4cf5b3f63a1c1b928c9f2adfe88ebaacbd4197217244842ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0550321309003332$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00135660$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Unterberger, Jérémie</creatorcontrib><title>On vertex algebra representations of the Schrödinger–Virasoro Lie algebra</title><title>Nuclear physics. B</title><description>The Schrödinger–Virasoro Lie algebra
sv
is an extension of the Virasoro Lie algebra by a nilpotent Lie algebra formed with a bosonic current of weight
3
2
and a bosonic current of weight 1. It is also a natural infinite-dimensional extension of the Schrödinger Lie algebra, which — leaving aside the invariance under time-translation — has been proved to be a symmetry algebra for many statistical physics models undergoing a dynamics with dynamical exponent
z
=
2
.
We define in this article general Schrödinger–Virasoro primary fields by analogy with conformal field theory, characterized by a ‘spin’ index and a (non-relativistic) mass, and construct vertex algebra representations of
sv
out of a charged symplectic boson and a free boson and its associated vertex operators. We also compute two- and three-point functions of still conjectural massive fields that are defined by an analytic continuation with respect to a formal parameter.</description><subject>Algebraic structure of integrable models</subject><subject>Condensed Matter</subject><subject>Conformal field-theory</subject><subject>Correlation functions</subject><subject>Infinite-dimensional Lie algebras</subject><subject>Mathematical Physics</subject><subject>Non-equilibrium statistical physics</subject><subject>Physics</subject><subject>Schrödinger-invariance</subject><subject>Statistical Mechanics</subject><subject>Supersymmetry</subject><issn>0550-3213</issn><issn>1873-1562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEqVwBrJlkeBH4jjLqgKKFKkLHlvLdsaNo5BUdqjojjtwFy7ATTgJqQrdMpuRRv_3S_MhdElwQjDh103SvZp2XW-DTijGRYJ5gok4QhMichaTjNNjNMFZhmNGCTtFZyE0eBzOxASVyy7agB_gLVLtCrRXkYe1hwDdoAbXdyHqbTTUED2Y2n99Vq5bgf9-_3h2XoXe91Hp4A89RydWtQEufvcUPd3ePM4Xcbm8u5_PytiwQgxxhfNcF2mRmdwSpVNjM80sZ4oYogsqTGGpqiwIAVopo6uUFDklOU1TkVKwbIqu9r21auXauxflt7JXTi5mpdzdMCYs4xxv6JjN91nj-xA82ANAsNwJlI08CJQ7gRJzOQocydmehPGVjQMvg3HQGaicBzPIqnf_dvwAy--AyA</recordid><startdate>20091221</startdate><enddate>20091221</enddate><creator>Unterberger, Jérémie</creator><general>Elsevier B.V</general><general>North-Holland ; Elsevier [1967-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20091221</creationdate><title>On vertex algebra representations of the Schrödinger–Virasoro Lie algebra</title><author>Unterberger, Jérémie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d077b9495c7f1ab4cf5b3f63a1c1b928c9f2adfe88ebaacbd4197217244842ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebraic structure of integrable models</topic><topic>Condensed Matter</topic><topic>Conformal field-theory</topic><topic>Correlation functions</topic><topic>Infinite-dimensional Lie algebras</topic><topic>Mathematical Physics</topic><topic>Non-equilibrium statistical physics</topic><topic>Physics</topic><topic>Schrödinger-invariance</topic><topic>Statistical Mechanics</topic><topic>Supersymmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unterberger, Jérémie</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nuclear physics. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unterberger, Jérémie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On vertex algebra representations of the Schrödinger–Virasoro Lie algebra</atitle><jtitle>Nuclear physics. B</jtitle><date>2009-12-21</date><risdate>2009</risdate><volume>823</volume><issue>3</issue><spage>320</spage><epage>371</epage><pages>320-371</pages><issn>0550-3213</issn><eissn>1873-1562</eissn><abstract>The Schrödinger–Virasoro Lie algebra
sv
is an extension of the Virasoro Lie algebra by a nilpotent Lie algebra formed with a bosonic current of weight
3
2
and a bosonic current of weight 1. It is also a natural infinite-dimensional extension of the Schrödinger Lie algebra, which — leaving aside the invariance under time-translation — has been proved to be a symmetry algebra for many statistical physics models undergoing a dynamics with dynamical exponent
z
=
2
.
We define in this article general Schrödinger–Virasoro primary fields by analogy with conformal field theory, characterized by a ‘spin’ index and a (non-relativistic) mass, and construct vertex algebra representations of
sv
out of a charged symplectic boson and a free boson and its associated vertex operators. We also compute two- and three-point functions of still conjectural massive fields that are defined by an analytic continuation with respect to a formal parameter.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nuclphysb.2009.06.018</doi><tpages>52</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0550-3213 |
ispartof | Nuclear physics. B, 2009-12, Vol.823 (3), p.320-371 |
issn | 0550-3213 1873-1562 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00135660v2 |
source | Elsevier ScienceDirect Journals |
subjects | Algebraic structure of integrable models Condensed Matter Conformal field-theory Correlation functions Infinite-dimensional Lie algebras Mathematical Physics Non-equilibrium statistical physics Physics Schrödinger-invariance Statistical Mechanics Supersymmetry |
title | On vertex algebra representations of the Schrödinger–Virasoro Lie algebra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20vertex%20algebra%20representations%20of%20the%20Schr%C3%B6dinger%E2%80%93Virasoro%20Lie%20algebra&rft.jtitle=Nuclear%20physics.%20B&rft.au=Unterberger,%20J%C3%A9r%C3%A9mie&rft.date=2009-12-21&rft.volume=823&rft.issue=3&rft.spage=320&rft.epage=371&rft.pages=320-371&rft.issn=0550-3213&rft.eissn=1873-1562&rft_id=info:doi/10.1016/j.nuclphysb.2009.06.018&rft_dat=%3Celsevier_hal_p%3ES0550321309003332%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0550321309003332&rfr_iscdi=true |