The structure of human apolipoprotein E2, E3 and E4 in solution 1. Tertiary and quaternary structure

Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibriu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical chemistry 2006-01, Vol.119 (2), p.158-169
Hauptverfasser: Barbier, Anne, Clément-Collin, Vanessa, Dergunov, Alexander D, Visvikis, Athanase, Siest, Gérard, Aggerbeck, Lawrence P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 2
container_start_page 158
container_title Biophysical chemistry
container_volume 119
creator Barbier, Anne
Clément-Collin, Vanessa
Dergunov, Alexander D
Visvikis, Athanase
Siest, Gérard
Aggerbeck, Lawrence P
description Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibrium experiments. By liquid chromatography, all three isoforms consisted of three major species with Stokes radii of 4.0, 5.0 and 6.6 nm. Sedimentation velocity confirmed the presence of monomers, dimers and tetramers as major species of each isoform. The association schemes established by sedimentation equilibrium experiments corresponded to monomer-dimer-tetramer-octamer for apoE2, monomer-dimer-tetramer for apoE3 and monomer-dimer-tetramer-octamer for apoE4. Each of the three isoforms exhibits a distinct self-association pattern. The apolipoprotein multi-domain structure was mapped by limited proteolysis with trypsin, chymotrypsin, elastase, subtilisin and Staphylococcus aureus V8 protease. All five enzymes produced stable intermediates during the degradation of the three apoE isoforms, as described for plasma apoE3. The recombinant apoE isoforms, thus, consist of N- and C-terminal domains. The presence of the fusion peptide did not appear to alter the apolipoprotein tertiary organization. However, a 30 kDa amino-terminal fragment appeared during the degradation of the recombinant apoE isoforms resulting from cleavage in the 273-278 region. This region, not accessible in plasma apoE3, results from a different conformation of the C-terminal domain in the recombinant isoforms. A specific pattern for the apoE4 C-terminal domain was observed during the proteolysis. The region 230-260 in apoE4, in contrast to that of apoE3 and apoE2, was not accessible to proteases, probably due to the existence of a longer helix in this region of apoE4 stabilized by an interdomain interaction.
doi_str_mv 10.1016/j.bpc.2005.07.010
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00131021v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70684929</sourcerecordid><originalsourceid>FETCH-LOGICAL-h243t-9d1f97b67f5eef49b3b9c95d444f20ec8ba93bf56b57032f132ae101255dd3f53</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxfeg2Fr9AF5kT4Jg4uy_pHssJVqh4KWew26yS1KSbJrNCn57U1s7l2He_HjMG4QeCMQESPK6j3VfxBRAxJDGQOAKzYEBiXhC6Qzder-HqZYAN2hGEsKk5MkclbvKYD8OoRjDYLCzuAqt6rDqXVP3rh_caOoOZ_QFZwyrrsQZx5PgXRPG2nWYxHhnhrFWw8_f-hDUaIbuOF5s79C1VY039-e-QF9v2W69ibaf7x_r1TaqKGdjJEtiZaqT1ApjLJeaaVlIUXLOLQVTLLWSTFuRaJECo5YwqswUngpRlswKtkDPJ99KNXk_1O10Re5UnW9W2_yoARBGgJJvMrFPJ3aKeAjGj3lb-8I0jeqMCz5PIVlySeUEPp7BoFtTXnz_f8h-AaXGcRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70684929</pqid></control><display><type>article</type><title>The structure of human apolipoprotein E2, E3 and E4 in solution 1. Tertiary and quaternary structure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Barbier, Anne ; Clément-Collin, Vanessa ; Dergunov, Alexander D ; Visvikis, Athanase ; Siest, Gérard ; Aggerbeck, Lawrence P</creator><creatorcontrib>Barbier, Anne ; Clément-Collin, Vanessa ; Dergunov, Alexander D ; Visvikis, Athanase ; Siest, Gérard ; Aggerbeck, Lawrence P</creatorcontrib><description>Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibrium experiments. By liquid chromatography, all three isoforms consisted of three major species with Stokes radii of 4.0, 5.0 and 6.6 nm. Sedimentation velocity confirmed the presence of monomers, dimers and tetramers as major species of each isoform. The association schemes established by sedimentation equilibrium experiments corresponded to monomer-dimer-tetramer-octamer for apoE2, monomer-dimer-tetramer for apoE3 and monomer-dimer-tetramer-octamer for apoE4. Each of the three isoforms exhibits a distinct self-association pattern. The apolipoprotein multi-domain structure was mapped by limited proteolysis with trypsin, chymotrypsin, elastase, subtilisin and Staphylococcus aureus V8 protease. All five enzymes produced stable intermediates during the degradation of the three apoE isoforms, as described for plasma apoE3. The recombinant apoE isoforms, thus, consist of N- and C-terminal domains. The presence of the fusion peptide did not appear to alter the apolipoprotein tertiary organization. However, a 30 kDa amino-terminal fragment appeared during the degradation of the recombinant apoE isoforms resulting from cleavage in the 273-278 region. This region, not accessible in plasma apoE3, results from a different conformation of the C-terminal domain in the recombinant isoforms. A specific pattern for the apoE4 C-terminal domain was observed during the proteolysis. The region 230-260 in apoE4, in contrast to that of apoE3 and apoE2, was not accessible to proteases, probably due to the existence of a longer helix in this region of apoE4 stabilized by an interdomain interaction.</description><identifier>ISSN: 0301-4622</identifier><identifier>DOI: 10.1016/j.bpc.2005.07.010</identifier><identifier>PMID: 16139946</identifier><language>eng</language><publisher>Netherlands: Elsevier</publisher><subject>Apolipoprotein E2 ; Apolipoprotein E3 ; Apolipoprotein E4 ; Apolipoproteins E ; Apolipoproteins E - chemistry ; Biochemistry, Molecular Biology ; Chemical Phenomena ; Chemistry, Physical ; Chromatography, Gel ; Chromatography, Gel - methods ; Enzymes ; Enzymes - chemistry ; Humans ; Life Sciences ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sensitivity and Specificity ; Solutions ; Solutions - chemistry</subject><ispartof>Biophysical chemistry, 2006-01, Vol.119 (2), p.158-169</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16139946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00131021$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbier, Anne</creatorcontrib><creatorcontrib>Clément-Collin, Vanessa</creatorcontrib><creatorcontrib>Dergunov, Alexander D</creatorcontrib><creatorcontrib>Visvikis, Athanase</creatorcontrib><creatorcontrib>Siest, Gérard</creatorcontrib><creatorcontrib>Aggerbeck, Lawrence P</creatorcontrib><title>The structure of human apolipoprotein E2, E3 and E4 in solution 1. Tertiary and quaternary structure</title><title>Biophysical chemistry</title><addtitle>Biophys Chem</addtitle><description>Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibrium experiments. By liquid chromatography, all three isoforms consisted of three major species with Stokes radii of 4.0, 5.0 and 6.6 nm. Sedimentation velocity confirmed the presence of monomers, dimers and tetramers as major species of each isoform. The association schemes established by sedimentation equilibrium experiments corresponded to monomer-dimer-tetramer-octamer for apoE2, monomer-dimer-tetramer for apoE3 and monomer-dimer-tetramer-octamer for apoE4. Each of the three isoforms exhibits a distinct self-association pattern. The apolipoprotein multi-domain structure was mapped by limited proteolysis with trypsin, chymotrypsin, elastase, subtilisin and Staphylococcus aureus V8 protease. All five enzymes produced stable intermediates during the degradation of the three apoE isoforms, as described for plasma apoE3. The recombinant apoE isoforms, thus, consist of N- and C-terminal domains. The presence of the fusion peptide did not appear to alter the apolipoprotein tertiary organization. However, a 30 kDa amino-terminal fragment appeared during the degradation of the recombinant apoE isoforms resulting from cleavage in the 273-278 region. This region, not accessible in plasma apoE3, results from a different conformation of the C-terminal domain in the recombinant isoforms. A specific pattern for the apoE4 C-terminal domain was observed during the proteolysis. The region 230-260 in apoE4, in contrast to that of apoE3 and apoE2, was not accessible to proteases, probably due to the existence of a longer helix in this region of apoE4 stabilized by an interdomain interaction.</description><subject>Apolipoprotein E2</subject><subject>Apolipoprotein E3</subject><subject>Apolipoprotein E4</subject><subject>Apolipoproteins E</subject><subject>Apolipoproteins E - chemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>Chromatography, Gel</subject><subject>Chromatography, Gel - methods</subject><subject>Enzymes</subject><subject>Enzymes - chemistry</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Sensitivity and Specificity</subject><subject>Solutions</subject><subject>Solutions - chemistry</subject><issn>0301-4622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE9Lw0AQxfeg2Fr9AF5kT4Jg4uy_pHssJVqh4KWew26yS1KSbJrNCn57U1s7l2He_HjMG4QeCMQESPK6j3VfxBRAxJDGQOAKzYEBiXhC6Qzder-HqZYAN2hGEsKk5MkclbvKYD8OoRjDYLCzuAqt6rDqXVP3rh_caOoOZ_QFZwyrrsQZx5PgXRPG2nWYxHhnhrFWw8_f-hDUaIbuOF5s79C1VY039-e-QF9v2W69ibaf7x_r1TaqKGdjJEtiZaqT1ApjLJeaaVlIUXLOLQVTLLWSTFuRaJECo5YwqswUngpRlswKtkDPJ99KNXk_1O10Re5UnW9W2_yoARBGgJJvMrFPJ3aKeAjGj3lb-8I0jeqMCz5PIVlySeUEPp7BoFtTXnz_f8h-AaXGcRg</recordid><startdate>20060120</startdate><enddate>20060120</enddate><creator>Barbier, Anne</creator><creator>Clément-Collin, Vanessa</creator><creator>Dergunov, Alexander D</creator><creator>Visvikis, Athanase</creator><creator>Siest, Gérard</creator><creator>Aggerbeck, Lawrence P</creator><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20060120</creationdate><title>The structure of human apolipoprotein E2, E3 and E4 in solution 1. Tertiary and quaternary structure</title><author>Barbier, Anne ; Clément-Collin, Vanessa ; Dergunov, Alexander D ; Visvikis, Athanase ; Siest, Gérard ; Aggerbeck, Lawrence P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h243t-9d1f97b67f5eef49b3b9c95d444f20ec8ba93bf56b57032f132ae101255dd3f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Apolipoprotein E2</topic><topic>Apolipoprotein E3</topic><topic>Apolipoprotein E4</topic><topic>Apolipoproteins E</topic><topic>Apolipoproteins E - chemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>Chromatography, Gel</topic><topic>Chromatography, Gel - methods</topic><topic>Enzymes</topic><topic>Enzymes - chemistry</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Sensitivity and Specificity</topic><topic>Solutions</topic><topic>Solutions - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbier, Anne</creatorcontrib><creatorcontrib>Clément-Collin, Vanessa</creatorcontrib><creatorcontrib>Dergunov, Alexander D</creatorcontrib><creatorcontrib>Visvikis, Athanase</creatorcontrib><creatorcontrib>Siest, Gérard</creatorcontrib><creatorcontrib>Aggerbeck, Lawrence P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biophysical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbier, Anne</au><au>Clément-Collin, Vanessa</au><au>Dergunov, Alexander D</au><au>Visvikis, Athanase</au><au>Siest, Gérard</au><au>Aggerbeck, Lawrence P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure of human apolipoprotein E2, E3 and E4 in solution 1. Tertiary and quaternary structure</atitle><jtitle>Biophysical chemistry</jtitle><addtitle>Biophys Chem</addtitle><date>2006-01-20</date><risdate>2006</risdate><volume>119</volume><issue>2</issue><spage>158</spage><epage>169</epage><pages>158-169</pages><issn>0301-4622</issn><abstract>Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibrium experiments. By liquid chromatography, all three isoforms consisted of three major species with Stokes radii of 4.0, 5.0 and 6.6 nm. Sedimentation velocity confirmed the presence of monomers, dimers and tetramers as major species of each isoform. The association schemes established by sedimentation equilibrium experiments corresponded to monomer-dimer-tetramer-octamer for apoE2, monomer-dimer-tetramer for apoE3 and monomer-dimer-tetramer-octamer for apoE4. Each of the three isoforms exhibits a distinct self-association pattern. The apolipoprotein multi-domain structure was mapped by limited proteolysis with trypsin, chymotrypsin, elastase, subtilisin and Staphylococcus aureus V8 protease. All five enzymes produced stable intermediates during the degradation of the three apoE isoforms, as described for plasma apoE3. The recombinant apoE isoforms, thus, consist of N- and C-terminal domains. The presence of the fusion peptide did not appear to alter the apolipoprotein tertiary organization. However, a 30 kDa amino-terminal fragment appeared during the degradation of the recombinant apoE isoforms resulting from cleavage in the 273-278 region. This region, not accessible in plasma apoE3, results from a different conformation of the C-terminal domain in the recombinant isoforms. A specific pattern for the apoE4 C-terminal domain was observed during the proteolysis. The region 230-260 in apoE4, in contrast to that of apoE3 and apoE2, was not accessible to proteases, probably due to the existence of a longer helix in this region of apoE4 stabilized by an interdomain interaction.</abstract><cop>Netherlands</cop><pub>Elsevier</pub><pmid>16139946</pmid><doi>10.1016/j.bpc.2005.07.010</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4622
ispartof Biophysical chemistry, 2006-01, Vol.119 (2), p.158-169
issn 0301-4622
language eng
recordid cdi_hal_primary_oai_HAL_hal_00131021v1
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Apolipoprotein E2
Apolipoprotein E3
Apolipoprotein E4
Apolipoproteins E
Apolipoproteins E - chemistry
Biochemistry, Molecular Biology
Chemical Phenomena
Chemistry, Physical
Chromatography, Gel
Chromatography, Gel - methods
Enzymes
Enzymes - chemistry
Humans
Life Sciences
Protein Conformation
Protein Structure, Secondary
Protein Structure, Tertiary
Sensitivity and Specificity
Solutions
Solutions - chemistry
title The structure of human apolipoprotein E2, E3 and E4 in solution 1. Tertiary and quaternary structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20of%20human%20apolipoprotein%20E2,%20E3%20and%20E4%20in%20solution%201.%20Tertiary%20and%20quaternary%20structure&rft.jtitle=Biophysical%20chemistry&rft.au=Barbier,%20Anne&rft.date=2006-01-20&rft.volume=119&rft.issue=2&rft.spage=158&rft.epage=169&rft.pages=158-169&rft.issn=0301-4622&rft_id=info:doi/10.1016/j.bpc.2005.07.010&rft_dat=%3Cproquest_hal_p%3E70684929%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70684929&rft_id=info:pmid/16139946&rfr_iscdi=true