On the Number of Fully Packed Loop Configurations with a Fixed Associated Matching
We show that the number of fully packed loop configurations corresponding to a matching with $m$ nested arches is polynomial in $m$ if $m$ is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11(1) (2004), Article #R13].
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2005-04, Vol.11 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the number of fully packed loop configurations corresponding to a matching with $m$ nested arches is polynomial in $m$ if $m$ is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11(1) (2004), Article #R13]. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/1873 |