On the Number of Fully Packed Loop Configurations with a Fixed Associated Matching

We show that the number of fully packed loop configurations corresponding to a matching with $m$ nested arches is polynomial in $m$ if $m$ is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11(1) (2004), Article #R13].

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2005-04, Vol.11 (2)
Hauptverfasser: Caselli, F., Krattenthaler, C., Lass, B., Nadeau, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the number of fully packed loop configurations corresponding to a matching with $m$ nested arches is polynomial in $m$ if $m$ is large enough, thus essentially proving two conjectures by Zuber [Electronic J. Combin. 11(1) (2004), Article #R13].
ISSN:1077-8926
1077-8926
DOI:10.37236/1873