Charge-Shift Bonding-A Class of Electron-Pair Bonds That Emerges from Valence Bond Theory and Is Supported by the Electron Localization Function Approach
This paper deals with a central paradigm of chemistry, the electron‐pair bond. Valence bond (VB) theory and electron‐localization function (ELF) calculations of 21 single bonds demonstrate that along the two classical bond families of covalent and ionic bonds, there exists a class of charge‐shift bo...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2005-10, Vol.11 (21), p.6358-6371 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6371 |
---|---|
container_issue | 21 |
container_start_page | 6358 |
container_title | Chemistry : a European journal |
container_volume | 11 |
creator | Shaik, Sason Danovich, David Silvi, Bernard Lauvergnat, David L. Hiberty, Philippe C. |
description | This paper deals with a central paradigm of chemistry, the electron‐pair bond. Valence bond (VB) theory and electron‐localization function (ELF) calculations of 21 single bonds demonstrate that along the two classical bond families of covalent and ionic bonds, there exists a class of charge‐shift bonds (CS bonds) in which the fluctuation of the electron pair density plays a dominant role. In VB theory, CS bonding manifests by way of a large covalent‐ionic resonance energy, RECS, and in ELF by a depleted basin population with large variances (fluctuations). CS bonding is shown to be a fundamental mechanism that is necessary to satisfy the equilibrium condition, namely the virial ratio of the kinetic and potential energy contributions to the bond energy. The paper defines the atomic propensity and territory for CS bonding: Atoms (fragments) that are prone to CS bonding are compact electronegative and/or lone‐pair‐rich species. As such, the territory of CS bonding transcends considerations of static charge distribution, and involves: a) homopolar bonds of heteroatoms with zero static ionicity, b) heteropolar σ and π bonds of the electronegative and/or electron‐pair‐rich elements among themselves and to other atoms (e.g., the higher metalloids, Si, Ge, Sn, etc), c) all hypercoordinate molecules. Several experimental manifestations of charge‐shift bonding are discussed, such as depleted bonding density, the rarity of ionic chemistry of silicon in condensed phases, and the high barriers of halogen‐transfer reactions as compared to hydrogen‐transfers.
A new class of bonding, sustained by large covalent‐ionic resonance energies, and called charge‐shift bonds, is discovered by valence bond (VB) theory and electron localization function (ELF) calculations (see picture). It is shown that charge‐shift bonding has characteristic structural, electron density and reactivity manifestations, different than the classical covalent and ionic bonds. |
doi_str_mv | 10.1002/chem.200500265 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00126509v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68705757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-f446b1bcc27c29f89f81fe707a4262c58a7ae3b3640b5485b487e00ce69ba4913</originalsourceid><addsrcrecordid>eNqFkU-P0zAQxS0EYsvClSPyCYlDip3EdnIsUbtdqcsfbYGj5biTjSGJg52wW74J3xa3qQo3JEue8fze08gPoZeUzCkh8VtdQzuPCWGh4ewRmlEW0ygRnD1GM5KnIuIsyS_QM--_EUJyniRP0QXlJAsVm6HfRa3cHUS3takG_M52O9PdRQtcNMp7bCu8bEAPznbRR2XcEfB4W6sBL1sIQo8rZ1v8RTXQaTjOwxis22MVymuPb8e-t26AHS73eKjh7Ig3VqvG_FKDCc1q7PSxWPS9s0rXz9GTSjUeXpzuS_R5tdwW62jz4eq6WGwinVLGoipNeUlLrWOh47zKwqEVCCJUGvNYs0wJBUmZ8JSULM1YmWYCCNHA81KlOU0u0ZvJt1aN7J1pldtLq4xcLzby8EYIDV9L8p8H9vXEhhV_jOAH2RqvoWlUB3b0kmeCMMFEAOcTqJ313kF1dqZEHoKTh-DkObggeHVyHssWdn_xU1IByCfg3jSw_4-dLNbLm3_No0lr_AAPZ61y3yUXiWDy6_sruf60ullt4-CX_AFpsbO3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68705757</pqid></control><display><type>article</type><title>Charge-Shift Bonding-A Class of Electron-Pair Bonds That Emerges from Valence Bond Theory and Is Supported by the Electron Localization Function Approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shaik, Sason ; Danovich, David ; Silvi, Bernard ; Lauvergnat, David L. ; Hiberty, Philippe C.</creator><creatorcontrib>Shaik, Sason ; Danovich, David ; Silvi, Bernard ; Lauvergnat, David L. ; Hiberty, Philippe C.</creatorcontrib><description>This paper deals with a central paradigm of chemistry, the electron‐pair bond. Valence bond (VB) theory and electron‐localization function (ELF) calculations of 21 single bonds demonstrate that along the two classical bond families of covalent and ionic bonds, there exists a class of charge‐shift bonds (CS bonds) in which the fluctuation of the electron pair density plays a dominant role. In VB theory, CS bonding manifests by way of a large covalent‐ionic resonance energy, RECS, and in ELF by a depleted basin population with large variances (fluctuations). CS bonding is shown to be a fundamental mechanism that is necessary to satisfy the equilibrium condition, namely the virial ratio of the kinetic and potential energy contributions to the bond energy. The paper defines the atomic propensity and territory for CS bonding: Atoms (fragments) that are prone to CS bonding are compact electronegative and/or lone‐pair‐rich species. As such, the territory of CS bonding transcends considerations of static charge distribution, and involves: a) homopolar bonds of heteroatoms with zero static ionicity, b) heteropolar σ and π bonds of the electronegative and/or electron‐pair‐rich elements among themselves and to other atoms (e.g., the higher metalloids, Si, Ge, Sn, etc), c) all hypercoordinate molecules. Several experimental manifestations of charge‐shift bonding are discussed, such as depleted bonding density, the rarity of ionic chemistry of silicon in condensed phases, and the high barriers of halogen‐transfer reactions as compared to hydrogen‐transfers.
A new class of bonding, sustained by large covalent‐ionic resonance energies, and called charge‐shift bonds, is discovered by valence bond (VB) theory and electron localization function (ELF) calculations (see picture). It is shown that charge‐shift bonding has characteristic structural, electron density and reactivity manifestations, different than the classical covalent and ionic bonds.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.200500265</identifier><identifier>PMID: 16086335</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>bond theory ; charge-shift bonding ; Chemical Physics ; electron pairing ; ELF (electron localization function) ; Physics ; valence bond</subject><ispartof>Chemistry : a European journal, 2005-10, Vol.11 (21), p.6358-6371</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-f446b1bcc27c29f89f81fe707a4262c58a7ae3b3640b5485b487e00ce69ba4913</citedby><cites>FETCH-LOGICAL-c4155-f446b1bcc27c29f89f81fe707a4262c58a7ae3b3640b5485b487e00ce69ba4913</cites><orcidid>0000-0002-8258-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.200500265$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16086335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00126509$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaik, Sason</creatorcontrib><creatorcontrib>Danovich, David</creatorcontrib><creatorcontrib>Silvi, Bernard</creatorcontrib><creatorcontrib>Lauvergnat, David L.</creatorcontrib><creatorcontrib>Hiberty, Philippe C.</creatorcontrib><title>Charge-Shift Bonding-A Class of Electron-Pair Bonds That Emerges from Valence Bond Theory and Is Supported by the Electron Localization Function Approach</title><title>Chemistry : a European journal</title><addtitle>Chemistry - A European Journal</addtitle><description>This paper deals with a central paradigm of chemistry, the electron‐pair bond. Valence bond (VB) theory and electron‐localization function (ELF) calculations of 21 single bonds demonstrate that along the two classical bond families of covalent and ionic bonds, there exists a class of charge‐shift bonds (CS bonds) in which the fluctuation of the electron pair density plays a dominant role. In VB theory, CS bonding manifests by way of a large covalent‐ionic resonance energy, RECS, and in ELF by a depleted basin population with large variances (fluctuations). CS bonding is shown to be a fundamental mechanism that is necessary to satisfy the equilibrium condition, namely the virial ratio of the kinetic and potential energy contributions to the bond energy. The paper defines the atomic propensity and territory for CS bonding: Atoms (fragments) that are prone to CS bonding are compact electronegative and/or lone‐pair‐rich species. As such, the territory of CS bonding transcends considerations of static charge distribution, and involves: a) homopolar bonds of heteroatoms with zero static ionicity, b) heteropolar σ and π bonds of the electronegative and/or electron‐pair‐rich elements among themselves and to other atoms (e.g., the higher metalloids, Si, Ge, Sn, etc), c) all hypercoordinate molecules. Several experimental manifestations of charge‐shift bonding are discussed, such as depleted bonding density, the rarity of ionic chemistry of silicon in condensed phases, and the high barriers of halogen‐transfer reactions as compared to hydrogen‐transfers.
A new class of bonding, sustained by large covalent‐ionic resonance energies, and called charge‐shift bonds, is discovered by valence bond (VB) theory and electron localization function (ELF) calculations (see picture). It is shown that charge‐shift bonding has characteristic structural, electron density and reactivity manifestations, different than the classical covalent and ionic bonds.</description><subject>bond theory</subject><subject>charge-shift bonding</subject><subject>Chemical Physics</subject><subject>electron pairing</subject><subject>ELF (electron localization function)</subject><subject>Physics</subject><subject>valence bond</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkU-P0zAQxS0EYsvClSPyCYlDip3EdnIsUbtdqcsfbYGj5biTjSGJg52wW74J3xa3qQo3JEue8fze08gPoZeUzCkh8VtdQzuPCWGh4ewRmlEW0ygRnD1GM5KnIuIsyS_QM--_EUJyniRP0QXlJAsVm6HfRa3cHUS3takG_M52O9PdRQtcNMp7bCu8bEAPznbRR2XcEfB4W6sBL1sIQo8rZ1v8RTXQaTjOwxis22MVymuPb8e-t26AHS73eKjh7Ig3VqvG_FKDCc1q7PSxWPS9s0rXz9GTSjUeXpzuS_R5tdwW62jz4eq6WGwinVLGoipNeUlLrWOh47zKwqEVCCJUGvNYs0wJBUmZ8JSULM1YmWYCCNHA81KlOU0u0ZvJt1aN7J1pldtLq4xcLzby8EYIDV9L8p8H9vXEhhV_jOAH2RqvoWlUB3b0kmeCMMFEAOcTqJ313kF1dqZEHoKTh-DkObggeHVyHssWdn_xU1IByCfg3jSw_4-dLNbLm3_No0lr_AAPZ61y3yUXiWDy6_sruf60ullt4-CX_AFpsbO3</recordid><startdate>20051021</startdate><enddate>20051021</enddate><creator>Shaik, Sason</creator><creator>Danovich, David</creator><creator>Silvi, Bernard</creator><creator>Lauvergnat, David L.</creator><creator>Hiberty, Philippe C.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH Verlag</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8258-3531</orcidid></search><sort><creationdate>20051021</creationdate><title>Charge-Shift Bonding-A Class of Electron-Pair Bonds That Emerges from Valence Bond Theory and Is Supported by the Electron Localization Function Approach</title><author>Shaik, Sason ; Danovich, David ; Silvi, Bernard ; Lauvergnat, David L. ; Hiberty, Philippe C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-f446b1bcc27c29f89f81fe707a4262c58a7ae3b3640b5485b487e00ce69ba4913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>bond theory</topic><topic>charge-shift bonding</topic><topic>Chemical Physics</topic><topic>electron pairing</topic><topic>ELF (electron localization function)</topic><topic>Physics</topic><topic>valence bond</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaik, Sason</creatorcontrib><creatorcontrib>Danovich, David</creatorcontrib><creatorcontrib>Silvi, Bernard</creatorcontrib><creatorcontrib>Lauvergnat, David L.</creatorcontrib><creatorcontrib>Hiberty, Philippe C.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaik, Sason</au><au>Danovich, David</au><au>Silvi, Bernard</au><au>Lauvergnat, David L.</au><au>Hiberty, Philippe C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge-Shift Bonding-A Class of Electron-Pair Bonds That Emerges from Valence Bond Theory and Is Supported by the Electron Localization Function Approach</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry - A European Journal</addtitle><date>2005-10-21</date><risdate>2005</risdate><volume>11</volume><issue>21</issue><spage>6358</spage><epage>6371</epage><pages>6358-6371</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>This paper deals with a central paradigm of chemistry, the electron‐pair bond. Valence bond (VB) theory and electron‐localization function (ELF) calculations of 21 single bonds demonstrate that along the two classical bond families of covalent and ionic bonds, there exists a class of charge‐shift bonds (CS bonds) in which the fluctuation of the electron pair density plays a dominant role. In VB theory, CS bonding manifests by way of a large covalent‐ionic resonance energy, RECS, and in ELF by a depleted basin population with large variances (fluctuations). CS bonding is shown to be a fundamental mechanism that is necessary to satisfy the equilibrium condition, namely the virial ratio of the kinetic and potential energy contributions to the bond energy. The paper defines the atomic propensity and territory for CS bonding: Atoms (fragments) that are prone to CS bonding are compact electronegative and/or lone‐pair‐rich species. As such, the territory of CS bonding transcends considerations of static charge distribution, and involves: a) homopolar bonds of heteroatoms with zero static ionicity, b) heteropolar σ and π bonds of the electronegative and/or electron‐pair‐rich elements among themselves and to other atoms (e.g., the higher metalloids, Si, Ge, Sn, etc), c) all hypercoordinate molecules. Several experimental manifestations of charge‐shift bonding are discussed, such as depleted bonding density, the rarity of ionic chemistry of silicon in condensed phases, and the high barriers of halogen‐transfer reactions as compared to hydrogen‐transfers.
A new class of bonding, sustained by large covalent‐ionic resonance energies, and called charge‐shift bonds, is discovered by valence bond (VB) theory and electron localization function (ELF) calculations (see picture). It is shown that charge‐shift bonding has characteristic structural, electron density and reactivity manifestations, different than the classical covalent and ionic bonds.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>16086335</pmid><doi>10.1002/chem.200500265</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8258-3531</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2005-10, Vol.11 (21), p.6358-6371 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00126509v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bond theory charge-shift bonding Chemical Physics electron pairing ELF (electron localization function) Physics valence bond |
title | Charge-Shift Bonding-A Class of Electron-Pair Bonds That Emerges from Valence Bond Theory and Is Supported by the Electron Localization Function Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge-Shift%20Bonding-A%20Class%20of%20Electron-Pair%20Bonds%20That%20Emerges%20from%20Valence%20Bond%20Theory%20and%20Is%20Supported%20by%20the%20Electron%20Localization%20Function%20Approach&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Shaik,%20Sason&rft.date=2005-10-21&rft.volume=11&rft.issue=21&rft.spage=6358&rft.epage=6371&rft.pages=6358-6371&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.200500265&rft_dat=%3Cproquest_hal_p%3E68705757%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68705757&rft_id=info:pmid/16086335&rfr_iscdi=true |