Random tilings of high symmetry: I. mean-field theory

We study random tiling models in the limit of high rotational symmetry. In this limit a mean-field theory yields reasonable predictions for the configurational entropy of free boundary rhombus tilings in two dimensions. We base our mean-field theory on an iterative tiling construction inspired by th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2005-09, Vol.120 (5-6), p.799-835
Hauptverfasser: DESTAINVILLE, N, WIDOM, M, MOSSERI, R, BAILLY, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 835
container_issue 5-6
container_start_page 799
container_title Journal of statistical physics
container_volume 120
creator DESTAINVILLE, N
WIDOM, M
MOSSERI, R
BAILLY, F
description We study random tiling models in the limit of high rotational symmetry. In this limit a mean-field theory yields reasonable predictions for the configurational entropy of free boundary rhombus tilings in two dimensions. We base our mean-field theory on an iterative tiling construction inspired by the work of de Bruijn. In addition to the entropy, we consider correlation functions, phason elasticity and the thermodynamic limit. Tilings of dimension other than two are considered briefly.
doi_str_mv 10.1007/s10955-005-6989-y
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00123832v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00123832v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-37a43b191c349c0c16ef1c1f348846c9b24d1c6decb0476c73b444f5fa278fcc3</originalsourceid><addsrcrecordid>eNpFkEtLw0AURgdRsFZ_gLtsXLiYeu88Mhl3pVhbKAii62EymWkieZRMEPLvTYno6sLlnG9xCLlHWCGAeooIWkoKIGmqM03HC7JAqRjVKfJLsgBgjAqF8prcxPgFABMlF0S-27bommSo6qo9xqQLSVkdyySOTeOHfnxO9quk8balofJ1kQyl7_rxllwFW0d_93uX5HP78rHZ0cPb636zPlDHQQ-UKyt4jhodF9qBw9QHdBi4yDKROp0zUaBLC-9yECp1iudCiCCDZSoLzvEleZx3S1ubU181th9NZyuzWx_M-QeAjGecfePE4sy6voux9-FPQDDnRmZuNDnSnBuZcXIeZudko7N16G3rqvgvKs4zxoD_AFyyZU8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random tilings of high symmetry: I. mean-field theory</title><source>SpringerLink Journals - AutoHoldings</source><creator>DESTAINVILLE, N ; WIDOM, M ; MOSSERI, R ; BAILLY, F</creator><creatorcontrib>DESTAINVILLE, N ; WIDOM, M ; MOSSERI, R ; BAILLY, F</creatorcontrib><description>We study random tiling models in the limit of high rotational symmetry. In this limit a mean-field theory yields reasonable predictions for the configurational entropy of free boundary rhombus tilings in two dimensions. We base our mean-field theory on an iterative tiling construction inspired by the work of de Bruijn. In addition to the entropy, we consider correlation functions, phason elasticity and the thermodynamic limit. Tilings of dimension other than two are considered briefly.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-005-6989-y</identifier><identifier>CODEN: JSTPBS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Condensed Matter ; Exact sciences and technology ; Physics ; Statistical Mechanics ; Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><ispartof>Journal of statistical physics, 2005-09, Vol.120 (5-6), p.799-835</ispartof><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-37a43b191c349c0c16ef1c1f348846c9b24d1c6decb0476c73b444f5fa278fcc3</citedby><cites>FETCH-LOGICAL-c309t-37a43b191c349c0c16ef1c1f348846c9b24d1c6decb0476c73b444f5fa278fcc3</cites><orcidid>0000-0003-3867-5102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17338220$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00123832$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>DESTAINVILLE, N</creatorcontrib><creatorcontrib>WIDOM, M</creatorcontrib><creatorcontrib>MOSSERI, R</creatorcontrib><creatorcontrib>BAILLY, F</creatorcontrib><title>Random tilings of high symmetry: I. mean-field theory</title><title>Journal of statistical physics</title><description>We study random tiling models in the limit of high rotational symmetry. In this limit a mean-field theory yields reasonable predictions for the configurational entropy of free boundary rhombus tilings in two dimensions. We base our mean-field theory on an iterative tiling construction inspired by the work of de Bruijn. In addition to the entropy, we consider correlation functions, phason elasticity and the thermodynamic limit. Tilings of dimension other than two are considered briefly.</description><subject>Condensed Matter</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AURgdRsFZ_gLtsXLiYeu88Mhl3pVhbKAii62EymWkieZRMEPLvTYno6sLlnG9xCLlHWCGAeooIWkoKIGmqM03HC7JAqRjVKfJLsgBgjAqF8prcxPgFABMlF0S-27bommSo6qo9xqQLSVkdyySOTeOHfnxO9quk8balofJ1kQyl7_rxllwFW0d_93uX5HP78rHZ0cPb636zPlDHQQ-UKyt4jhodF9qBw9QHdBi4yDKROp0zUaBLC-9yECp1iudCiCCDZSoLzvEleZx3S1ubU181th9NZyuzWx_M-QeAjGecfePE4sy6voux9-FPQDDnRmZuNDnSnBuZcXIeZudko7N16G3rqvgvKs4zxoD_AFyyZU8</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>DESTAINVILLE, N</creator><creator>WIDOM, M</creator><creator>MOSSERI, R</creator><creator>BAILLY, F</creator><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3867-5102</orcidid></search><sort><creationdate>20050901</creationdate><title>Random tilings of high symmetry: I. mean-field theory</title><author>DESTAINVILLE, N ; WIDOM, M ; MOSSERI, R ; BAILLY, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-37a43b191c349c0c16ef1c1f348846c9b24d1c6decb0476c73b444f5fa278fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Condensed Matter</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DESTAINVILLE, N</creatorcontrib><creatorcontrib>WIDOM, M</creatorcontrib><creatorcontrib>MOSSERI, R</creatorcontrib><creatorcontrib>BAILLY, F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DESTAINVILLE, N</au><au>WIDOM, M</au><au>MOSSERI, R</au><au>BAILLY, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random tilings of high symmetry: I. mean-field theory</atitle><jtitle>Journal of statistical physics</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>120</volume><issue>5-6</issue><spage>799</spage><epage>835</epage><pages>799-835</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><coden>JSTPBS</coden><abstract>We study random tiling models in the limit of high rotational symmetry. In this limit a mean-field theory yields reasonable predictions for the configurational entropy of free boundary rhombus tilings in two dimensions. We base our mean-field theory on an iterative tiling construction inspired by the work of de Bruijn. In addition to the entropy, we consider correlation functions, phason elasticity and the thermodynamic limit. Tilings of dimension other than two are considered briefly.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10955-005-6989-y</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0003-3867-5102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2005-09, Vol.120 (5-6), p.799-835
issn 0022-4715
1572-9613
language eng
recordid cdi_hal_primary_oai_HAL_hal_00123832v1
source SpringerLink Journals - AutoHoldings
subjects Condensed Matter
Exact sciences and technology
Physics
Statistical Mechanics
Statistical physics, thermodynamics, and nonlinear dynamical systems
title Random tilings of high symmetry: I. mean-field theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20tilings%20of%20high%20symmetry:%20I.%20mean-field%20theory&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=DESTAINVILLE,%20N&rft.date=2005-09-01&rft.volume=120&rft.issue=5-6&rft.spage=799&rft.epage=835&rft.pages=799-835&rft.issn=0022-4715&rft.eissn=1572-9613&rft.coden=JSTPBS&rft_id=info:doi/10.1007/s10955-005-6989-y&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00123832v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true