Random tilings of high symmetry: I. mean-field theory
We study random tiling models in the limit of high rotational symmetry. In this limit a mean-field theory yields reasonable predictions for the configurational entropy of free boundary rhombus tilings in two dimensions. We base our mean-field theory on an iterative tiling construction inspired by th...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2005-09, Vol.120 (5-6), p.799-835 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 835 |
---|---|
container_issue | 5-6 |
container_start_page | 799 |
container_title | Journal of statistical physics |
container_volume | 120 |
creator | DESTAINVILLE, N WIDOM, M MOSSERI, R BAILLY, F |
description | We study random tiling models in the limit of high rotational symmetry. In this limit a mean-field theory yields reasonable predictions for the configurational entropy of free boundary rhombus tilings in two dimensions. We base our mean-field theory on an iterative tiling construction inspired by the work of de Bruijn. In addition to the entropy, we consider correlation functions, phason elasticity and the thermodynamic limit. Tilings of dimension other than two are considered briefly. |
doi_str_mv | 10.1007/s10955-005-6989-y |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00123832v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00123832v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-37a43b191c349c0c16ef1c1f348846c9b24d1c6decb0476c73b444f5fa278fcc3</originalsourceid><addsrcrecordid>eNpFkEtLw0AURgdRsFZ_gLtsXLiYeu88Mhl3pVhbKAii62EymWkieZRMEPLvTYno6sLlnG9xCLlHWCGAeooIWkoKIGmqM03HC7JAqRjVKfJLsgBgjAqF8prcxPgFABMlF0S-27bommSo6qo9xqQLSVkdyySOTeOHfnxO9quk8balofJ1kQyl7_rxllwFW0d_93uX5HP78rHZ0cPb636zPlDHQQ-UKyt4jhodF9qBw9QHdBi4yDKROp0zUaBLC-9yECp1iudCiCCDZSoLzvEleZx3S1ubU181th9NZyuzWx_M-QeAjGecfePE4sy6voux9-FPQDDnRmZuNDnSnBuZcXIeZudko7N16G3rqvgvKs4zxoD_AFyyZU8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random tilings of high symmetry: I. mean-field theory</title><source>SpringerLink Journals - AutoHoldings</source><creator>DESTAINVILLE, N ; WIDOM, M ; MOSSERI, R ; BAILLY, F</creator><creatorcontrib>DESTAINVILLE, N ; WIDOM, M ; MOSSERI, R ; BAILLY, F</creatorcontrib><description>We study random tiling models in the limit of high rotational symmetry. In this limit a mean-field theory yields reasonable predictions for the configurational entropy of free boundary rhombus tilings in two dimensions. We base our mean-field theory on an iterative tiling construction inspired by the work of de Bruijn. In addition to the entropy, we consider correlation functions, phason elasticity and the thermodynamic limit. Tilings of dimension other than two are considered briefly.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-005-6989-y</identifier><identifier>CODEN: JSTPBS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Condensed Matter ; Exact sciences and technology ; Physics ; Statistical Mechanics ; Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><ispartof>Journal of statistical physics, 2005-09, Vol.120 (5-6), p.799-835</ispartof><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-37a43b191c349c0c16ef1c1f348846c9b24d1c6decb0476c73b444f5fa278fcc3</citedby><cites>FETCH-LOGICAL-c309t-37a43b191c349c0c16ef1c1f348846c9b24d1c6decb0476c73b444f5fa278fcc3</cites><orcidid>0000-0003-3867-5102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17338220$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00123832$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>DESTAINVILLE, N</creatorcontrib><creatorcontrib>WIDOM, M</creatorcontrib><creatorcontrib>MOSSERI, R</creatorcontrib><creatorcontrib>BAILLY, F</creatorcontrib><title>Random tilings of high symmetry: I. mean-field theory</title><title>Journal of statistical physics</title><description>We study random tiling models in the limit of high rotational symmetry. In this limit a mean-field theory yields reasonable predictions for the configurational entropy of free boundary rhombus tilings in two dimensions. We base our mean-field theory on an iterative tiling construction inspired by the work of de Bruijn. In addition to the entropy, we consider correlation functions, phason elasticity and the thermodynamic limit. Tilings of dimension other than two are considered briefly.</description><subject>Condensed Matter</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AURgdRsFZ_gLtsXLiYeu88Mhl3pVhbKAii62EymWkieZRMEPLvTYno6sLlnG9xCLlHWCGAeooIWkoKIGmqM03HC7JAqRjVKfJLsgBgjAqF8prcxPgFABMlF0S-27bommSo6qo9xqQLSVkdyySOTeOHfnxO9quk8balofJ1kQyl7_rxllwFW0d_93uX5HP78rHZ0cPb636zPlDHQQ-UKyt4jhodF9qBw9QHdBi4yDKROp0zUaBLC-9yECp1iudCiCCDZSoLzvEleZx3S1ubU181th9NZyuzWx_M-QeAjGecfePE4sy6voux9-FPQDDnRmZuNDnSnBuZcXIeZudko7N16G3rqvgvKs4zxoD_AFyyZU8</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>DESTAINVILLE, N</creator><creator>WIDOM, M</creator><creator>MOSSERI, R</creator><creator>BAILLY, F</creator><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3867-5102</orcidid></search><sort><creationdate>20050901</creationdate><title>Random tilings of high symmetry: I. mean-field theory</title><author>DESTAINVILLE, N ; WIDOM, M ; MOSSERI, R ; BAILLY, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-37a43b191c349c0c16ef1c1f348846c9b24d1c6decb0476c73b444f5fa278fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Condensed Matter</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DESTAINVILLE, N</creatorcontrib><creatorcontrib>WIDOM, M</creatorcontrib><creatorcontrib>MOSSERI, R</creatorcontrib><creatorcontrib>BAILLY, F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DESTAINVILLE, N</au><au>WIDOM, M</au><au>MOSSERI, R</au><au>BAILLY, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random tilings of high symmetry: I. mean-field theory</atitle><jtitle>Journal of statistical physics</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>120</volume><issue>5-6</issue><spage>799</spage><epage>835</epage><pages>799-835</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><coden>JSTPBS</coden><abstract>We study random tiling models in the limit of high rotational symmetry. In this limit a mean-field theory yields reasonable predictions for the configurational entropy of free boundary rhombus tilings in two dimensions. We base our mean-field theory on an iterative tiling construction inspired by the work of de Bruijn. In addition to the entropy, we consider correlation functions, phason elasticity and the thermodynamic limit. Tilings of dimension other than two are considered briefly.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10955-005-6989-y</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0003-3867-5102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2005-09, Vol.120 (5-6), p.799-835 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00123832v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Condensed Matter Exact sciences and technology Physics Statistical Mechanics Statistical physics, thermodynamics, and nonlinear dynamical systems |
title | Random tilings of high symmetry: I. mean-field theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20tilings%20of%20high%20symmetry:%20I.%20mean-field%20theory&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=DESTAINVILLE,%20N&rft.date=2005-09-01&rft.volume=120&rft.issue=5-6&rft.spage=799&rft.epage=835&rft.pages=799-835&rft.issn=0022-4715&rft.eissn=1572-9613&rft.coden=JSTPBS&rft_id=info:doi/10.1007/s10955-005-6989-y&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00123832v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |