Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide
Hydrolysis and condensation under acidic conditions of bis(triprop-1-ynylstannyl)p-phenylene 1, p-xylene 2, or butylene 3 precursors yielded bridged polystannoxanes in the form of xerogels after being dried under reduced pressure. The gels were amorphous and nonporous with very low specific surface...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2006-12, Vol.18 (26), p.6364-6372 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6372 |
---|---|
container_issue | 26 |
container_start_page | 6364 |
container_title | Chemistry of materials |
container_volume | 18 |
creator | Toupance, Thierry El Hamzaoui, Hicham Jousseaume, Bernard Riague, Hocine Saadeddin, Iyad Campet, Guy Brötz, Joachim |
description | Hydrolysis and condensation under acidic conditions of bis(triprop-1-ynylstannyl)p-phenylene 1, p-xylene 2, or butylene 3 precursors yielded bridged polystannoxanes in the form of xerogels after being dried under reduced pressure. The gels were amorphous and nonporous with very low specific surface areas. Thermal treatment of the xerogels in air at 400−500 °C resulted in nanocrystalline nanoporous cassiterite tin dioxide materials, which have been thoroughly characterized by elemental analysis, FTIR, TGA−MS, powder XRD, and N2 adsorption porosimetry. The calcined materials consisted of a porous network of aggregated nanoparticles with a nanoporosity stemming from the interparticle space. A careful tuning of the precursor nature and the calcination conditions enabled the synthesis of materials with Brunauer−Emmet−Teller surface areas ranging from 40 to 150 m2 g-1, a mean pore size between 3.5 and 12 nm, and an average particle size of 5 to 25 nm. Starting from precursor 1 appeared to be the best strategy to obtain pure nanocrystalline tin dioxide materials with good textural properties for applications, with the p-phenylene bridge being easily removed by calcination. |
doi_str_mv | 10.1021/cm061964d |
format | Article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00123376v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h70550665</sourcerecordid><originalsourceid>FETCH-LOGICAL-a331t-e3053f561b371dd919f0aec2f088b65c92407831043c7d574d137587445af3d23</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgUQpDPwDLwwMgbMdxw5bKB9FKqWCINgsN3YgpY0rO6XtvydVUVmYTjo99-ruEDolcEGAkstiBglJk9jsoQ7hFCIOQPdRB2Qqoljw5BAdhTABIC2XHZRd-8p8WINHbroOja5rt9K1vcIZHtolfnaLxuLGLbU3eKhrN3feLQLOqxrfVG5VGXuMDko9Dfbkt3bR691t3utHg6f7h142iDRjpIksA85KnpAxE8SYlKQlaFvQEqQcJ7xIaQxCMgIxK4ThIjaECS5FHHNdMkNZF51vcz_1VM19NdN-rZyuVD8bqE2vvYkyJpJv8mcL70LwttwNEFCbP6ndn1obbW0VGrvaQe2_VCLaFVQ-elGPPKdvsv-uROvPtl4XQU3cwtft1f_k_gCD-3MX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide</title><source>American Chemical Society Journals</source><creator>Toupance, Thierry ; El Hamzaoui, Hicham ; Jousseaume, Bernard ; Riague, Hocine ; Saadeddin, Iyad ; Campet, Guy ; Brötz, Joachim</creator><creatorcontrib>Toupance, Thierry ; El Hamzaoui, Hicham ; Jousseaume, Bernard ; Riague, Hocine ; Saadeddin, Iyad ; Campet, Guy ; Brötz, Joachim</creatorcontrib><description>Hydrolysis and condensation under acidic conditions of bis(triprop-1-ynylstannyl)p-phenylene 1, p-xylene 2, or butylene 3 precursors yielded bridged polystannoxanes in the form of xerogels after being dried under reduced pressure. The gels were amorphous and nonporous with very low specific surface areas. Thermal treatment of the xerogels in air at 400−500 °C resulted in nanocrystalline nanoporous cassiterite tin dioxide materials, which have been thoroughly characterized by elemental analysis, FTIR, TGA−MS, powder XRD, and N2 adsorption porosimetry. The calcined materials consisted of a porous network of aggregated nanoparticles with a nanoporosity stemming from the interparticle space. A careful tuning of the precursor nature and the calcination conditions enabled the synthesis of materials with Brunauer−Emmet−Teller surface areas ranging from 40 to 150 m2 g-1, a mean pore size between 3.5 and 12 nm, and an average particle size of 5 to 25 nm. Starting from precursor 1 appeared to be the best strategy to obtain pure nanocrystalline tin dioxide materials with good textural properties for applications, with the p-phenylene bridge being easily removed by calcination.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm061964d</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Material chemistry</subject><ispartof>Chemistry of materials, 2006-12, Vol.18 (26), p.6364-6372</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a331t-e3053f561b371dd919f0aec2f088b65c92407831043c7d574d137587445af3d23</citedby><cites>FETCH-LOGICAL-a331t-e3053f561b371dd919f0aec2f088b65c92407831043c7d574d137587445af3d23</cites><orcidid>0000-0003-2468-3072 ; 0000-0001-8234-7064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm061964d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm061964d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00123376$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Toupance, Thierry</creatorcontrib><creatorcontrib>El Hamzaoui, Hicham</creatorcontrib><creatorcontrib>Jousseaume, Bernard</creatorcontrib><creatorcontrib>Riague, Hocine</creatorcontrib><creatorcontrib>Saadeddin, Iyad</creatorcontrib><creatorcontrib>Campet, Guy</creatorcontrib><creatorcontrib>Brötz, Joachim</creatorcontrib><title>Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Hydrolysis and condensation under acidic conditions of bis(triprop-1-ynylstannyl)p-phenylene 1, p-xylene 2, or butylene 3 precursors yielded bridged polystannoxanes in the form of xerogels after being dried under reduced pressure. The gels were amorphous and nonporous with very low specific surface areas. Thermal treatment of the xerogels in air at 400−500 °C resulted in nanocrystalline nanoporous cassiterite tin dioxide materials, which have been thoroughly characterized by elemental analysis, FTIR, TGA−MS, powder XRD, and N2 adsorption porosimetry. The calcined materials consisted of a porous network of aggregated nanoparticles with a nanoporosity stemming from the interparticle space. A careful tuning of the precursor nature and the calcination conditions enabled the synthesis of materials with Brunauer−Emmet−Teller surface areas ranging from 40 to 150 m2 g-1, a mean pore size between 3.5 and 12 nm, and an average particle size of 5 to 25 nm. Starting from precursor 1 appeared to be the best strategy to obtain pure nanocrystalline tin dioxide materials with good textural properties for applications, with the p-phenylene bridge being easily removed by calcination.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpt0D1PwzAQBmALgUQpDPwDLwwMgbMdxw5bKB9FKqWCINgsN3YgpY0rO6XtvydVUVmYTjo99-ruEDolcEGAkstiBglJk9jsoQ7hFCIOQPdRB2Qqoljw5BAdhTABIC2XHZRd-8p8WINHbroOja5rt9K1vcIZHtolfnaLxuLGLbU3eKhrN3feLQLOqxrfVG5VGXuMDko9Dfbkt3bR691t3utHg6f7h142iDRjpIksA85KnpAxE8SYlKQlaFvQEqQcJ7xIaQxCMgIxK4ThIjaECS5FHHNdMkNZF51vcz_1VM19NdN-rZyuVD8bqE2vvYkyJpJv8mcL70LwttwNEFCbP6ndn1obbW0VGrvaQe2_VCLaFVQ-elGPPKdvsv-uROvPtl4XQU3cwtft1f_k_gCD-3MX</recordid><startdate>20061226</startdate><enddate>20061226</enddate><creator>Toupance, Thierry</creator><creator>El Hamzaoui, Hicham</creator><creator>Jousseaume, Bernard</creator><creator>Riague, Hocine</creator><creator>Saadeddin, Iyad</creator><creator>Campet, Guy</creator><creator>Brötz, Joachim</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2468-3072</orcidid><orcidid>https://orcid.org/0000-0001-8234-7064</orcidid></search><sort><creationdate>20061226</creationdate><title>Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide</title><author>Toupance, Thierry ; El Hamzaoui, Hicham ; Jousseaume, Bernard ; Riague, Hocine ; Saadeddin, Iyad ; Campet, Guy ; Brötz, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a331t-e3053f561b371dd919f0aec2f088b65c92407831043c7d574d137587445af3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toupance, Thierry</creatorcontrib><creatorcontrib>El Hamzaoui, Hicham</creatorcontrib><creatorcontrib>Jousseaume, Bernard</creatorcontrib><creatorcontrib>Riague, Hocine</creatorcontrib><creatorcontrib>Saadeddin, Iyad</creatorcontrib><creatorcontrib>Campet, Guy</creatorcontrib><creatorcontrib>Brötz, Joachim</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toupance, Thierry</au><au>El Hamzaoui, Hicham</au><au>Jousseaume, Bernard</au><au>Riague, Hocine</au><au>Saadeddin, Iyad</au><au>Campet, Guy</au><au>Brötz, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2006-12-26</date><risdate>2006</risdate><volume>18</volume><issue>26</issue><spage>6364</spage><epage>6372</epage><pages>6364-6372</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Hydrolysis and condensation under acidic conditions of bis(triprop-1-ynylstannyl)p-phenylene 1, p-xylene 2, or butylene 3 precursors yielded bridged polystannoxanes in the form of xerogels after being dried under reduced pressure. The gels were amorphous and nonporous with very low specific surface areas. Thermal treatment of the xerogels in air at 400−500 °C resulted in nanocrystalline nanoporous cassiterite tin dioxide materials, which have been thoroughly characterized by elemental analysis, FTIR, TGA−MS, powder XRD, and N2 adsorption porosimetry. The calcined materials consisted of a porous network of aggregated nanoparticles with a nanoporosity stemming from the interparticle space. A careful tuning of the precursor nature and the calcination conditions enabled the synthesis of materials with Brunauer−Emmet−Teller surface areas ranging from 40 to 150 m2 g-1, a mean pore size between 3.5 and 12 nm, and an average particle size of 5 to 25 nm. Starting from precursor 1 appeared to be the best strategy to obtain pure nanocrystalline tin dioxide materials with good textural properties for applications, with the p-phenylene bridge being easily removed by calcination.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm061964d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2468-3072</orcidid><orcidid>https://orcid.org/0000-0001-8234-7064</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2006-12, Vol.18 (26), p.6364-6372 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00123376v1 |
source | American Chemical Society Journals |
subjects | Chemical Sciences Material chemistry |
title | Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridged%20Polystannoxane:%20A%20New%20Route%20toward%20Nanoporous%20Tin%20Dioxide&rft.jtitle=Chemistry%20of%20materials&rft.au=Toupance,%20Thierry&rft.date=2006-12-26&rft.volume=18&rft.issue=26&rft.spage=6364&rft.epage=6372&rft.pages=6364-6372&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm061964d&rft_dat=%3Cacs_hal_p%3Eh70550665%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |