Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide

Hydrolysis and condensation under acidic conditions of bis(triprop-1-ynylstannyl)p-phenylene 1, p-xylene 2, or butylene 3 precursors yielded bridged polystannoxanes in the form of xerogels after being dried under reduced pressure. The gels were amorphous and nonporous with very low specific surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2006-12, Vol.18 (26), p.6364-6372
Hauptverfasser: Toupance, Thierry, El Hamzaoui, Hicham, Jousseaume, Bernard, Riague, Hocine, Saadeddin, Iyad, Campet, Guy, Brötz, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6372
container_issue 26
container_start_page 6364
container_title Chemistry of materials
container_volume 18
creator Toupance, Thierry
El Hamzaoui, Hicham
Jousseaume, Bernard
Riague, Hocine
Saadeddin, Iyad
Campet, Guy
Brötz, Joachim
description Hydrolysis and condensation under acidic conditions of bis(triprop-1-ynylstannyl)p-phenylene 1, p-xylene 2, or butylene 3 precursors yielded bridged polystannoxanes in the form of xerogels after being dried under reduced pressure. The gels were amorphous and nonporous with very low specific surface areas. Thermal treatment of the xerogels in air at 400−500 °C resulted in nanocrystalline nanoporous cassiterite tin dioxide materials, which have been thoroughly characterized by elemental analysis, FTIR, TGA−MS, powder XRD, and N2 adsorption porosimetry. The calcined materials consisted of a porous network of aggregated nanoparticles with a nanoporosity stemming from the interparticle space. A careful tuning of the precursor nature and the calcination conditions enabled the synthesis of materials with Brunauer−Emmet−Teller surface areas ranging from 40 to 150 m2 g-1, a mean pore size between 3.5 and 12 nm, and an average particle size of 5 to 25 nm. Starting from precursor 1 appeared to be the best strategy to obtain pure nanocrystalline tin dioxide materials with good textural properties for applications, with the p-phenylene bridge being easily removed by calcination.
doi_str_mv 10.1021/cm061964d
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00123376v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h70550665</sourcerecordid><originalsourceid>FETCH-LOGICAL-a331t-e3053f561b371dd919f0aec2f088b65c92407831043c7d574d137587445af3d23</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgUQpDPwDLwwMgbMdxw5bKB9FKqWCINgsN3YgpY0rO6XtvydVUVmYTjo99-ruEDolcEGAkstiBglJk9jsoQ7hFCIOQPdRB2Qqoljw5BAdhTABIC2XHZRd-8p8WINHbroOja5rt9K1vcIZHtolfnaLxuLGLbU3eKhrN3feLQLOqxrfVG5VGXuMDko9Dfbkt3bR691t3utHg6f7h142iDRjpIksA85KnpAxE8SYlKQlaFvQEqQcJ7xIaQxCMgIxK4ThIjaECS5FHHNdMkNZF51vcz_1VM19NdN-rZyuVD8bqE2vvYkyJpJv8mcL70LwttwNEFCbP6ndn1obbW0VGrvaQe2_VCLaFVQ-elGPPKdvsv-uROvPtl4XQU3cwtft1f_k_gCD-3MX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide</title><source>American Chemical Society Journals</source><creator>Toupance, Thierry ; El Hamzaoui, Hicham ; Jousseaume, Bernard ; Riague, Hocine ; Saadeddin, Iyad ; Campet, Guy ; Brötz, Joachim</creator><creatorcontrib>Toupance, Thierry ; El Hamzaoui, Hicham ; Jousseaume, Bernard ; Riague, Hocine ; Saadeddin, Iyad ; Campet, Guy ; Brötz, Joachim</creatorcontrib><description>Hydrolysis and condensation under acidic conditions of bis(triprop-1-ynylstannyl)p-phenylene 1, p-xylene 2, or butylene 3 precursors yielded bridged polystannoxanes in the form of xerogels after being dried under reduced pressure. The gels were amorphous and nonporous with very low specific surface areas. Thermal treatment of the xerogels in air at 400−500 °C resulted in nanocrystalline nanoporous cassiterite tin dioxide materials, which have been thoroughly characterized by elemental analysis, FTIR, TGA−MS, powder XRD, and N2 adsorption porosimetry. The calcined materials consisted of a porous network of aggregated nanoparticles with a nanoporosity stemming from the interparticle space. A careful tuning of the precursor nature and the calcination conditions enabled the synthesis of materials with Brunauer−Emmet−Teller surface areas ranging from 40 to 150 m2 g-1, a mean pore size between 3.5 and 12 nm, and an average particle size of 5 to 25 nm. Starting from precursor 1 appeared to be the best strategy to obtain pure nanocrystalline tin dioxide materials with good textural properties for applications, with the p-phenylene bridge being easily removed by calcination.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm061964d</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Material chemistry</subject><ispartof>Chemistry of materials, 2006-12, Vol.18 (26), p.6364-6372</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a331t-e3053f561b371dd919f0aec2f088b65c92407831043c7d574d137587445af3d23</citedby><cites>FETCH-LOGICAL-a331t-e3053f561b371dd919f0aec2f088b65c92407831043c7d574d137587445af3d23</cites><orcidid>0000-0003-2468-3072 ; 0000-0001-8234-7064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm061964d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm061964d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00123376$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Toupance, Thierry</creatorcontrib><creatorcontrib>El Hamzaoui, Hicham</creatorcontrib><creatorcontrib>Jousseaume, Bernard</creatorcontrib><creatorcontrib>Riague, Hocine</creatorcontrib><creatorcontrib>Saadeddin, Iyad</creatorcontrib><creatorcontrib>Campet, Guy</creatorcontrib><creatorcontrib>Brötz, Joachim</creatorcontrib><title>Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Hydrolysis and condensation under acidic conditions of bis(triprop-1-ynylstannyl)p-phenylene 1, p-xylene 2, or butylene 3 precursors yielded bridged polystannoxanes in the form of xerogels after being dried under reduced pressure. The gels were amorphous and nonporous with very low specific surface areas. Thermal treatment of the xerogels in air at 400−500 °C resulted in nanocrystalline nanoporous cassiterite tin dioxide materials, which have been thoroughly characterized by elemental analysis, FTIR, TGA−MS, powder XRD, and N2 adsorption porosimetry. The calcined materials consisted of a porous network of aggregated nanoparticles with a nanoporosity stemming from the interparticle space. A careful tuning of the precursor nature and the calcination conditions enabled the synthesis of materials with Brunauer−Emmet−Teller surface areas ranging from 40 to 150 m2 g-1, a mean pore size between 3.5 and 12 nm, and an average particle size of 5 to 25 nm. Starting from precursor 1 appeared to be the best strategy to obtain pure nanocrystalline tin dioxide materials with good textural properties for applications, with the p-phenylene bridge being easily removed by calcination.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpt0D1PwzAQBmALgUQpDPwDLwwMgbMdxw5bKB9FKqWCINgsN3YgpY0rO6XtvydVUVmYTjo99-ruEDolcEGAkstiBglJk9jsoQ7hFCIOQPdRB2Qqoljw5BAdhTABIC2XHZRd-8p8WINHbroOja5rt9K1vcIZHtolfnaLxuLGLbU3eKhrN3feLQLOqxrfVG5VGXuMDko9Dfbkt3bR691t3utHg6f7h142iDRjpIksA85KnpAxE8SYlKQlaFvQEqQcJ7xIaQxCMgIxK4ThIjaECS5FHHNdMkNZF51vcz_1VM19NdN-rZyuVD8bqE2vvYkyJpJv8mcL70LwttwNEFCbP6ndn1obbW0VGrvaQe2_VCLaFVQ-elGPPKdvsv-uROvPtl4XQU3cwtft1f_k_gCD-3MX</recordid><startdate>20061226</startdate><enddate>20061226</enddate><creator>Toupance, Thierry</creator><creator>El Hamzaoui, Hicham</creator><creator>Jousseaume, Bernard</creator><creator>Riague, Hocine</creator><creator>Saadeddin, Iyad</creator><creator>Campet, Guy</creator><creator>Brötz, Joachim</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2468-3072</orcidid><orcidid>https://orcid.org/0000-0001-8234-7064</orcidid></search><sort><creationdate>20061226</creationdate><title>Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide</title><author>Toupance, Thierry ; El Hamzaoui, Hicham ; Jousseaume, Bernard ; Riague, Hocine ; Saadeddin, Iyad ; Campet, Guy ; Brötz, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a331t-e3053f561b371dd919f0aec2f088b65c92407831043c7d574d137587445af3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toupance, Thierry</creatorcontrib><creatorcontrib>El Hamzaoui, Hicham</creatorcontrib><creatorcontrib>Jousseaume, Bernard</creatorcontrib><creatorcontrib>Riague, Hocine</creatorcontrib><creatorcontrib>Saadeddin, Iyad</creatorcontrib><creatorcontrib>Campet, Guy</creatorcontrib><creatorcontrib>Brötz, Joachim</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toupance, Thierry</au><au>El Hamzaoui, Hicham</au><au>Jousseaume, Bernard</au><au>Riague, Hocine</au><au>Saadeddin, Iyad</au><au>Campet, Guy</au><au>Brötz, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2006-12-26</date><risdate>2006</risdate><volume>18</volume><issue>26</issue><spage>6364</spage><epage>6372</epage><pages>6364-6372</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Hydrolysis and condensation under acidic conditions of bis(triprop-1-ynylstannyl)p-phenylene 1, p-xylene 2, or butylene 3 precursors yielded bridged polystannoxanes in the form of xerogels after being dried under reduced pressure. The gels were amorphous and nonporous with very low specific surface areas. Thermal treatment of the xerogels in air at 400−500 °C resulted in nanocrystalline nanoporous cassiterite tin dioxide materials, which have been thoroughly characterized by elemental analysis, FTIR, TGA−MS, powder XRD, and N2 adsorption porosimetry. The calcined materials consisted of a porous network of aggregated nanoparticles with a nanoporosity stemming from the interparticle space. A careful tuning of the precursor nature and the calcination conditions enabled the synthesis of materials with Brunauer−Emmet−Teller surface areas ranging from 40 to 150 m2 g-1, a mean pore size between 3.5 and 12 nm, and an average particle size of 5 to 25 nm. Starting from precursor 1 appeared to be the best strategy to obtain pure nanocrystalline tin dioxide materials with good textural properties for applications, with the p-phenylene bridge being easily removed by calcination.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm061964d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2468-3072</orcidid><orcidid>https://orcid.org/0000-0001-8234-7064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2006-12, Vol.18 (26), p.6364-6372
issn 0897-4756
1520-5002
language eng
recordid cdi_hal_primary_oai_HAL_hal_00123376v1
source American Chemical Society Journals
subjects Chemical Sciences
Material chemistry
title Bridged Polystannoxane: A New Route toward Nanoporous Tin Dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridged%20Polystannoxane:%20A%20New%20Route%20toward%20Nanoporous%20Tin%20Dioxide&rft.jtitle=Chemistry%20of%20materials&rft.au=Toupance,%20Thierry&rft.date=2006-12-26&rft.volume=18&rft.issue=26&rft.spage=6364&rft.epage=6372&rft.pages=6364-6372&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm061964d&rft_dat=%3Cacs_hal_p%3Eh70550665%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true