Well-Posedness of a Multiscale Model for Concentrated Suspensions

In a previous work [E. Cance s, I. Catto, and Y. Gati, SIAM J. Math. Anal., 37 (2005), pp. 60--82], three of us have studied a nonlinear parabolic equation arising in the mesoscopic modelling of concentrated suspensions of particles which are subjected to a given time-dependent shear rate. In the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiscale modeling & simulation 2005-01, Vol.4 (4), p.1041-1058
Hauptverfasser: Cancès, Eric, Catto, Isabelle, Gati, Yousra, Le Bris, Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a previous work [E. Cance s, I. Catto, and Y. Gati, SIAM J. Math. Anal., 37 (2005), pp. 60--82], three of us have studied a nonlinear parabolic equation arising in the mesoscopic modelling of concentrated suspensions of particles which are subjected to a given time-dependent shear rate. In the present work we extend the model to a more physically relevant situation where the shear rate actually depends on the macroscopic velocity of the fluid. As a feedback the macroscopic velocity is influenced by the average stress in the fluid. The geometry considered is that of a planar Couette flow. The mathematical system under study couples the one-dimensional heat equation and a nonlinear Fokker--Planck-type equation with nonhomogeneous, nonlocal, and possibly degenerate coefficients. We show the existence and the uniqueness of the global-in-time weak solutionto such a system.
ISSN:1540-3459
1540-3467
DOI:10.1137/040621223