Double quantization of the regressor space for long-term time series prediction: method and proof of stability
The Kohonen self-organization map is usually considered as a classification or clustering tool, with only a few applications in time series prediction. In this paper, a particular time series forecasting method based on Kohonen maps is described. This method has been specifically designed for the pr...
Gespeichert in:
Veröffentlicht in: | Neural networks 2004-10, Vol.17 (8), p.1169-1181 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1181 |
---|---|
container_issue | 8 |
container_start_page | 1169 |
container_title | Neural networks |
container_volume | 17 |
creator | Simon, Geoffroy Lendasse, Amaury Cottrell, Marie Fort, Jean-Claude Verleysen, Michel |
description | The Kohonen self-organization map is usually considered as a classification or clustering tool, with only a few applications in time series prediction. In this paper, a particular time series forecasting method based on Kohonen maps is described. This method has been specifically designed for the prediction of long-term trends. The proof of the stability of the method for long-term forecasting is given, as well as illustrations of the utilization of the method both in the scalar and vectorial cases. |
doi_str_mv | 10.1016/j.neunet.2004.08.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00115624v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608004001704</els_id><sourcerecordid>67090587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-16d32637d6492905ed1541f84e61f7d9cae9c2a20d177f82225c5587b48dbb393</originalsourceid><addsrcrecordid>eNp9kVFrFDEQx4Mo9qx-A5E8CT7sOcnuJlkfhFKtFQ580eeQTWZ7OXY31yRbaD-9OfbQt4ZAhuE3_5nMn5D3DLYMmPh82M64zJi3HKDZgtoCqBdkw5TsKi4Vf0k2oLq6EqDggrxJ6QAAQjX1a3LB2nJU223I_C0s_Yj0fjFz9k8m-zDTMNC8RxrxLmJKIdJ0NBbpUKIxzHdVxjjR7CekCaPHRI8Rnben2i90wrwPjprZlXQoUuWmbHo_-vz4lrwazJjw3fm9JH9uvv--vq12v378vL7aVbYRMldMuJqLWjrRdLyDFh1rGzaoBgUbpOuswc5yw8ExKQfFOW9t-ZDsG-X6vu7qS_Jp1d2bUR-jn0x81MF4fXu106ccAGOt4M0DK-zHlS3j3i-Ysp58sjiOZsawJC0klBGULGCzgjaGlCIO_5QZ6JMn-qBXT_TJEw2qtFGl7MNZf-kndP-LziYU4OsKYNnIg8eok_U427LTiDZrF_zzHf4CjX6fmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67090587</pqid></control><display><type>article</type><title>Double quantization of the regressor space for long-term time series prediction: method and proof of stability</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Simon, Geoffroy ; Lendasse, Amaury ; Cottrell, Marie ; Fort, Jean-Claude ; Verleysen, Michel</creator><creatorcontrib>Simon, Geoffroy ; Lendasse, Amaury ; Cottrell, Marie ; Fort, Jean-Claude ; Verleysen, Michel</creatorcontrib><description>The Kohonen self-organization map is usually considered as a classification or clustering tool, with only a few applications in time series prediction. In this paper, a particular time series forecasting method based on Kohonen maps is described. This method has been specifically designed for the prediction of long-term trends. The proof of the stability of the method for long-term forecasting is given, as well as illustrations of the utilization of the method both in the scalar and vectorial cases.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2004.08.008</identifier><identifier>PMID: 15555859</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Computer Science ; Forecasting ; Long term forecasting ; Machine Learning ; Mathematics ; Method stability proof ; Monte Carlo Method ; Neural Networks (Computer) ; Poland ; Power Plants ; SOM ; Statistics ; Time series ; Trend prediction</subject><ispartof>Neural networks, 2004-10, Vol.17 (8), p.1169-1181</ispartof><rights>2004 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-16d32637d6492905ed1541f84e61f7d9cae9c2a20d177f82225c5587b48dbb393</citedby><cites>FETCH-LOGICAL-c467t-16d32637d6492905ed1541f84e61f7d9cae9c2a20d177f82225c5587b48dbb393</cites><orcidid>0000-0003-4366-6155 ; 0000-0002-5975-9068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608004001704$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15555859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00115624$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Geoffroy</creatorcontrib><creatorcontrib>Lendasse, Amaury</creatorcontrib><creatorcontrib>Cottrell, Marie</creatorcontrib><creatorcontrib>Fort, Jean-Claude</creatorcontrib><creatorcontrib>Verleysen, Michel</creatorcontrib><title>Double quantization of the regressor space for long-term time series prediction: method and proof of stability</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The Kohonen self-organization map is usually considered as a classification or clustering tool, with only a few applications in time series prediction. In this paper, a particular time series forecasting method based on Kohonen maps is described. This method has been specifically designed for the prediction of long-term trends. The proof of the stability of the method for long-term forecasting is given, as well as illustrations of the utilization of the method both in the scalar and vectorial cases.</description><subject>Computer Science</subject><subject>Forecasting</subject><subject>Long term forecasting</subject><subject>Machine Learning</subject><subject>Mathematics</subject><subject>Method stability proof</subject><subject>Monte Carlo Method</subject><subject>Neural Networks (Computer)</subject><subject>Poland</subject><subject>Power Plants</subject><subject>SOM</subject><subject>Statistics</subject><subject>Time series</subject><subject>Trend prediction</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVFrFDEQx4Mo9qx-A5E8CT7sOcnuJlkfhFKtFQ580eeQTWZ7OXY31yRbaD-9OfbQt4ZAhuE3_5nMn5D3DLYMmPh82M64zJi3HKDZgtoCqBdkw5TsKi4Vf0k2oLq6EqDggrxJ6QAAQjX1a3LB2nJU223I_C0s_Yj0fjFz9k8m-zDTMNC8RxrxLmJKIdJ0NBbpUKIxzHdVxjjR7CekCaPHRI8Rnben2i90wrwPjprZlXQoUuWmbHo_-vz4lrwazJjw3fm9JH9uvv--vq12v378vL7aVbYRMldMuJqLWjrRdLyDFh1rGzaoBgUbpOuswc5yw8ExKQfFOW9t-ZDsG-X6vu7qS_Jp1d2bUR-jn0x81MF4fXu106ccAGOt4M0DK-zHlS3j3i-Ysp58sjiOZsawJC0klBGULGCzgjaGlCIO_5QZ6JMn-qBXT_TJEw2qtFGl7MNZf-kndP-LziYU4OsKYNnIg8eok_U427LTiDZrF_zzHf4CjX6fmg</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Simon, Geoffroy</creator><creator>Lendasse, Amaury</creator><creator>Cottrell, Marie</creator><creator>Fort, Jean-Claude</creator><creator>Verleysen, Michel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4366-6155</orcidid><orcidid>https://orcid.org/0000-0002-5975-9068</orcidid></search><sort><creationdate>20041001</creationdate><title>Double quantization of the regressor space for long-term time series prediction: method and proof of stability</title><author>Simon, Geoffroy ; Lendasse, Amaury ; Cottrell, Marie ; Fort, Jean-Claude ; Verleysen, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-16d32637d6492905ed1541f84e61f7d9cae9c2a20d177f82225c5587b48dbb393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computer Science</topic><topic>Forecasting</topic><topic>Long term forecasting</topic><topic>Machine Learning</topic><topic>Mathematics</topic><topic>Method stability proof</topic><topic>Monte Carlo Method</topic><topic>Neural Networks (Computer)</topic><topic>Poland</topic><topic>Power Plants</topic><topic>SOM</topic><topic>Statistics</topic><topic>Time series</topic><topic>Trend prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Geoffroy</creatorcontrib><creatorcontrib>Lendasse, Amaury</creatorcontrib><creatorcontrib>Cottrell, Marie</creatorcontrib><creatorcontrib>Fort, Jean-Claude</creatorcontrib><creatorcontrib>Verleysen, Michel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Geoffroy</au><au>Lendasse, Amaury</au><au>Cottrell, Marie</au><au>Fort, Jean-Claude</au><au>Verleysen, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double quantization of the regressor space for long-term time series prediction: method and proof of stability</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2004-10-01</date><risdate>2004</risdate><volume>17</volume><issue>8</issue><spage>1169</spage><epage>1181</epage><pages>1169-1181</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The Kohonen self-organization map is usually considered as a classification or clustering tool, with only a few applications in time series prediction. In this paper, a particular time series forecasting method based on Kohonen maps is described. This method has been specifically designed for the prediction of long-term trends. The proof of the stability of the method for long-term forecasting is given, as well as illustrations of the utilization of the method both in the scalar and vectorial cases.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15555859</pmid><doi>10.1016/j.neunet.2004.08.008</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4366-6155</orcidid><orcidid>https://orcid.org/0000-0002-5975-9068</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2004-10, Vol.17 (8), p.1169-1181 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00115624v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Computer Science Forecasting Long term forecasting Machine Learning Mathematics Method stability proof Monte Carlo Method Neural Networks (Computer) Poland Power Plants SOM Statistics Time series Trend prediction |
title | Double quantization of the regressor space for long-term time series prediction: method and proof of stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20quantization%20of%20the%20regressor%20space%20for%20long-term%20time%20series%20prediction:%20method%20and%20proof%20of%20stability&rft.jtitle=Neural%20networks&rft.au=Simon,%20Geoffroy&rft.date=2004-10-01&rft.volume=17&rft.issue=8&rft.spage=1169&rft.epage=1181&rft.pages=1169-1181&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2004.08.008&rft_dat=%3Cproquest_hal_p%3E67090587%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67090587&rft_id=info:pmid/15555859&rft_els_id=S0893608004001704&rfr_iscdi=true |