FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES
— For continuously welded structures subjected to cyclic loading, the highly stressed zones where cracks initiate and lead to failure are usually located at weld toes. At these critical points, called hot‐spots, the very local stress states are difficult to determine so that standard fatigue criteri...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 1996-01, Vol.19 (6), p.723-729 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 729 |
---|---|
container_issue | 6 |
container_start_page | 723 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 19 |
creator | Fayard, J.-L. Bignonnet, A. Van, K. Dang |
description | — For continuously welded structures subjected to cyclic loading, the highly stressed zones where cracks initiate and lead to failure are usually located at weld toes. At these critical points, called hot‐spots, the very local stress states are difficult to determine so that standard fatigue criteria are very difficult to apply for fatigue life prediction.
This work presents a fatigue design criterion for continuously welded thin sheet structures, based on a unique S‐N curve. The approach, which refers to the hot‐spot stress concept, defines the design stress S as the geometrical stress amplitude at the hot‐spot.
In practice, the geometrical stress state is calculated by means of the finite element method (FEM) using thin shell theory. Meshing rules for the welded connection, which can be applied methodically to any welding situation, allow the hot‐spot location, and therefore the design stress of any structure, to be determined.
Experimental data and FEM calculations show that a unique S‐N curve can be obtained whatever the geometry of the welded structure and the loading mode. |
doi_str_mv | 10.1111/j.1460-2695.1996.tb01317.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00111564v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26159489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5003-426d28186a534bbad5f74f770598d717f4d41c01416355ec5f74f890c873d4c93</originalsourceid><addsrcrecordid>eNqVkE1vm0AQhldVK9VN8x9QVUXqAbrDfkEOkSwMBMm1I4ybqJfRegEFF8cp67TOvy8Uy_fuZaSdZ57RvIR8AupB_75uPeCSur4MhQdhKL3DhgID5R3fkMm59ZZMAiWkq0Tw8J58sHZLKUjO2IR4ybTI0nXszOJVli6cKM-KOM-WCydZ5s59PJ_FM2dV5OuoWOfx6iN5V-vWVpenekHWSVxEt-58mWbRdO4aQSlzuS9LP4BAasH4ZqNLUSteK0VFGJQKVM1LDoYCB8mEqMy_dhBSEyhWchOyC_Jl9D7qFp-7Zqe7V9zrBm-ncxz--gMAhOS_oWevRva52_96qewBd401Vdvqp2r_YtGXIEIeDNLrETTd3tquqs9moDjEiVscMsMhMxzixFOceOyHP5-2aGt0W3f6yTT2bGAg_NCnPXYzYn-atnr9jwWYJLHyWS9wR0FjD9XxLNDdT5SKKYH3ixR_fM-_PUR3KQr2FzDVkZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26159489</pqid></control><display><type>article</type><title>FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fayard, J.-L. ; Bignonnet, A. ; Van, K. Dang</creator><creatorcontrib>Fayard, J.-L. ; Bignonnet, A. ; Van, K. Dang</creatorcontrib><description>— For continuously welded structures subjected to cyclic loading, the highly stressed zones where cracks initiate and lead to failure are usually located at weld toes. At these critical points, called hot‐spots, the very local stress states are difficult to determine so that standard fatigue criteria are very difficult to apply for fatigue life prediction.
This work presents a fatigue design criterion for continuously welded thin sheet structures, based on a unique S‐N curve. The approach, which refers to the hot‐spot stress concept, defines the design stress S as the geometrical stress amplitude at the hot‐spot.
In practice, the geometrical stress state is calculated by means of the finite element method (FEM) using thin shell theory. Meshing rules for the welded connection, which can be applied methodically to any welding situation, allow the hot‐spot location, and therefore the design stress of any structure, to be determined.
Experimental data and FEM calculations show that a unique S‐N curve can be obtained whatever the geometry of the welded structure and the loading mode.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/j.1460-2695.1996.tb01317.x</identifier><identifier>CODEN: FFESEY</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Design criteria ; Engineering Sciences ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; FE Method ; Hot-spot stresses ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Mechanics ; Metals. Metallurgy ; Physics ; Thin shell theory ; Welded structures</subject><ispartof>Fatigue & fracture of engineering materials & structures, 1996-01, Vol.19 (6), p.723-729</ispartof><rights>1996 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5003-426d28186a534bbad5f74f770598d717f4d41c01416355ec5f74f890c873d4c93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-2695.1996.tb01317.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-2695.1996.tb01317.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3152920$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00111564$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fayard, J.-L.</creatorcontrib><creatorcontrib>Bignonnet, A.</creatorcontrib><creatorcontrib>Van, K. Dang</creatorcontrib><title>FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES</title><title>Fatigue & fracture of engineering materials & structures</title><description>— For continuously welded structures subjected to cyclic loading, the highly stressed zones where cracks initiate and lead to failure are usually located at weld toes. At these critical points, called hot‐spots, the very local stress states are difficult to determine so that standard fatigue criteria are very difficult to apply for fatigue life prediction.
This work presents a fatigue design criterion for continuously welded thin sheet structures, based on a unique S‐N curve. The approach, which refers to the hot‐spot stress concept, defines the design stress S as the geometrical stress amplitude at the hot‐spot.
In practice, the geometrical stress state is calculated by means of the finite element method (FEM) using thin shell theory. Meshing rules for the welded connection, which can be applied methodically to any welding situation, allow the hot‐spot location, and therefore the design stress of any structure, to be determined.
Experimental data and FEM calculations show that a unique S‐N curve can be obtained whatever the geometry of the welded structure and the loading mode.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Design criteria</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>FE Method</subject><subject>Hot-spot stresses</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Mechanics</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Thin shell theory</subject><subject>Welded structures</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqVkE1vm0AQhldVK9VN8x9QVUXqAbrDfkEOkSwMBMm1I4ybqJfRegEFF8cp67TOvy8Uy_fuZaSdZ57RvIR8AupB_75uPeCSur4MhQdhKL3DhgID5R3fkMm59ZZMAiWkq0Tw8J58sHZLKUjO2IR4ybTI0nXszOJVli6cKM-KOM-WCydZ5s59PJ_FM2dV5OuoWOfx6iN5V-vWVpenekHWSVxEt-58mWbRdO4aQSlzuS9LP4BAasH4ZqNLUSteK0VFGJQKVM1LDoYCB8mEqMy_dhBSEyhWchOyC_Jl9D7qFp-7Zqe7V9zrBm-ncxz--gMAhOS_oWevRva52_96qewBd401Vdvqp2r_YtGXIEIeDNLrETTd3tquqs9moDjEiVscMsMhMxzixFOceOyHP5-2aGt0W3f6yTT2bGAg_NCnPXYzYn-atnr9jwWYJLHyWS9wR0FjD9XxLNDdT5SKKYH3ixR_fM-_PUR3KQr2FzDVkZQ</recordid><startdate>19960101</startdate><enddate>19960101</enddate><creator>Fayard, J.-L.</creator><creator>Bignonnet, A.</creator><creator>Van, K. Dang</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>19960101</creationdate><title>FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES</title><author>Fayard, J.-L. ; Bignonnet, A. ; Van, K. Dang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5003-426d28186a534bbad5f74f770598d717f4d41c01416355ec5f74f890c873d4c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Design criteria</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>FE Method</topic><topic>Hot-spot stresses</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Mechanics</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Thin shell theory</topic><topic>Welded structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fayard, J.-L.</creatorcontrib><creatorcontrib>Bignonnet, A.</creatorcontrib><creatorcontrib>Van, K. Dang</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fayard, J.-L.</au><au>Bignonnet, A.</au><au>Van, K. Dang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>1996-01-01</date><risdate>1996</risdate><volume>19</volume><issue>6</issue><spage>723</spage><epage>729</epage><pages>723-729</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><coden>FFESEY</coden><abstract>— For continuously welded structures subjected to cyclic loading, the highly stressed zones where cracks initiate and lead to failure are usually located at weld toes. At these critical points, called hot‐spots, the very local stress states are difficult to determine so that standard fatigue criteria are very difficult to apply for fatigue life prediction.
This work presents a fatigue design criterion for continuously welded thin sheet structures, based on a unique S‐N curve. The approach, which refers to the hot‐spot stress concept, defines the design stress S as the geometrical stress amplitude at the hot‐spot.
In practice, the geometrical stress state is calculated by means of the finite element method (FEM) using thin shell theory. Meshing rules for the welded connection, which can be applied methodically to any welding situation, allow the hot‐spot location, and therefore the design stress of any structure, to be determined.
Experimental data and FEM calculations show that a unique S‐N curve can be obtained whatever the geometry of the welded structure and the loading mode.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1460-2695.1996.tb01317.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 1996-01, Vol.19 (6), p.723-729 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00111564v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Condensed matter: structure, mechanical and thermal properties Design criteria Engineering Sciences Exact sciences and technology Fatigue, brittleness, fracture, and cracks FE Method Hot-spot stresses Mechanical and acoustical properties of condensed matter Mechanical properties of solids Mechanics Metals. Metallurgy Physics Thin shell theory Welded structures |
title | FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FATIGUE%20DESIGN%20CRITERION%20FOR%20WELDED%20STRUCTURES&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Fayard,%20J.-L.&rft.date=1996-01-01&rft.volume=19&rft.issue=6&rft.spage=723&rft.epage=729&rft.pages=723-729&rft.issn=8756-758X&rft.eissn=1460-2695&rft.coden=FFESEY&rft_id=info:doi/10.1111/j.1460-2695.1996.tb01317.x&rft_dat=%3Cproquest_hal_p%3E26159489%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26159489&rft_id=info:pmid/&rfr_iscdi=true |