FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES

— For continuously welded structures subjected to cyclic loading, the highly stressed zones where cracks initiate and lead to failure are usually located at weld toes. At these critical points, called hot‐spots, the very local stress states are difficult to determine so that standard fatigue criteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 1996-01, Vol.19 (6), p.723-729
Hauptverfasser: Fayard, J.-L., Bignonnet, A., Van, K. Dang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 729
container_issue 6
container_start_page 723
container_title Fatigue & fracture of engineering materials & structures
container_volume 19
creator Fayard, J.-L.
Bignonnet, A.
Van, K. Dang
description — For continuously welded structures subjected to cyclic loading, the highly stressed zones where cracks initiate and lead to failure are usually located at weld toes. At these critical points, called hot‐spots, the very local stress states are difficult to determine so that standard fatigue criteria are very difficult to apply for fatigue life prediction. This work presents a fatigue design criterion for continuously welded thin sheet structures, based on a unique S‐N curve. The approach, which refers to the hot‐spot stress concept, defines the design stress S as the geometrical stress amplitude at the hot‐spot. In practice, the geometrical stress state is calculated by means of the finite element method (FEM) using thin shell theory. Meshing rules for the welded connection, which can be applied methodically to any welding situation, allow the hot‐spot location, and therefore the design stress of any structure, to be determined. Experimental data and FEM calculations show that a unique S‐N curve can be obtained whatever the geometry of the welded structure and the loading mode.
doi_str_mv 10.1111/j.1460-2695.1996.tb01317.x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00111564v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26159489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5003-426d28186a534bbad5f74f770598d717f4d41c01416355ec5f74f890c873d4c93</originalsourceid><addsrcrecordid>eNqVkE1vm0AQhldVK9VN8x9QVUXqAbrDfkEOkSwMBMm1I4ybqJfRegEFF8cp67TOvy8Uy_fuZaSdZ57RvIR8AupB_75uPeCSur4MhQdhKL3DhgID5R3fkMm59ZZMAiWkq0Tw8J58sHZLKUjO2IR4ybTI0nXszOJVli6cKM-KOM-WCydZ5s59PJ_FM2dV5OuoWOfx6iN5V-vWVpenekHWSVxEt-58mWbRdO4aQSlzuS9LP4BAasH4ZqNLUSteK0VFGJQKVM1LDoYCB8mEqMy_dhBSEyhWchOyC_Jl9D7qFp-7Zqe7V9zrBm-ncxz--gMAhOS_oWevRva52_96qewBd401Vdvqp2r_YtGXIEIeDNLrETTd3tquqs9moDjEiVscMsMhMxzixFOceOyHP5-2aGt0W3f6yTT2bGAg_NCnPXYzYn-atnr9jwWYJLHyWS9wR0FjD9XxLNDdT5SKKYH3ixR_fM-_PUR3KQr2FzDVkZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26159489</pqid></control><display><type>article</type><title>FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fayard, J.-L. ; Bignonnet, A. ; Van, K. Dang</creator><creatorcontrib>Fayard, J.-L. ; Bignonnet, A. ; Van, K. Dang</creatorcontrib><description>— For continuously welded structures subjected to cyclic loading, the highly stressed zones where cracks initiate and lead to failure are usually located at weld toes. At these critical points, called hot‐spots, the very local stress states are difficult to determine so that standard fatigue criteria are very difficult to apply for fatigue life prediction. This work presents a fatigue design criterion for continuously welded thin sheet structures, based on a unique S‐N curve. The approach, which refers to the hot‐spot stress concept, defines the design stress S as the geometrical stress amplitude at the hot‐spot. In practice, the geometrical stress state is calculated by means of the finite element method (FEM) using thin shell theory. Meshing rules for the welded connection, which can be applied methodically to any welding situation, allow the hot‐spot location, and therefore the design stress of any structure, to be determined. Experimental data and FEM calculations show that a unique S‐N curve can be obtained whatever the geometry of the welded structure and the loading mode.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/j.1460-2695.1996.tb01317.x</identifier><identifier>CODEN: FFESEY</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Design criteria ; Engineering Sciences ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; FE Method ; Hot-spot stresses ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Mechanics ; Metals. Metallurgy ; Physics ; Thin shell theory ; Welded structures</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 1996-01, Vol.19 (6), p.723-729</ispartof><rights>1996 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5003-426d28186a534bbad5f74f770598d717f4d41c01416355ec5f74f890c873d4c93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-2695.1996.tb01317.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-2695.1996.tb01317.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3152920$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00111564$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fayard, J.-L.</creatorcontrib><creatorcontrib>Bignonnet, A.</creatorcontrib><creatorcontrib>Van, K. Dang</creatorcontrib><title>FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>— For continuously welded structures subjected to cyclic loading, the highly stressed zones where cracks initiate and lead to failure are usually located at weld toes. At these critical points, called hot‐spots, the very local stress states are difficult to determine so that standard fatigue criteria are very difficult to apply for fatigue life prediction. This work presents a fatigue design criterion for continuously welded thin sheet structures, based on a unique S‐N curve. The approach, which refers to the hot‐spot stress concept, defines the design stress S as the geometrical stress amplitude at the hot‐spot. In practice, the geometrical stress state is calculated by means of the finite element method (FEM) using thin shell theory. Meshing rules for the welded connection, which can be applied methodically to any welding situation, allow the hot‐spot location, and therefore the design stress of any structure, to be determined. Experimental data and FEM calculations show that a unique S‐N curve can be obtained whatever the geometry of the welded structure and the loading mode.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Design criteria</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>FE Method</subject><subject>Hot-spot stresses</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Mechanics</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Thin shell theory</subject><subject>Welded structures</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqVkE1vm0AQhldVK9VN8x9QVUXqAbrDfkEOkSwMBMm1I4ybqJfRegEFF8cp67TOvy8Uy_fuZaSdZ57RvIR8AupB_75uPeCSur4MhQdhKL3DhgID5R3fkMm59ZZMAiWkq0Tw8J58sHZLKUjO2IR4ybTI0nXszOJVli6cKM-KOM-WCydZ5s59PJ_FM2dV5OuoWOfx6iN5V-vWVpenekHWSVxEt-58mWbRdO4aQSlzuS9LP4BAasH4ZqNLUSteK0VFGJQKVM1LDoYCB8mEqMy_dhBSEyhWchOyC_Jl9D7qFp-7Zqe7V9zrBm-ncxz--gMAhOS_oWevRva52_96qewBd401Vdvqp2r_YtGXIEIeDNLrETTd3tquqs9moDjEiVscMsMhMxzixFOceOyHP5-2aGt0W3f6yTT2bGAg_NCnPXYzYn-atnr9jwWYJLHyWS9wR0FjD9XxLNDdT5SKKYH3ixR_fM-_PUR3KQr2FzDVkZQ</recordid><startdate>19960101</startdate><enddate>19960101</enddate><creator>Fayard, J.-L.</creator><creator>Bignonnet, A.</creator><creator>Van, K. Dang</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>19960101</creationdate><title>FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES</title><author>Fayard, J.-L. ; Bignonnet, A. ; Van, K. Dang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5003-426d28186a534bbad5f74f770598d717f4d41c01416355ec5f74f890c873d4c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Design criteria</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>FE Method</topic><topic>Hot-spot stresses</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Mechanics</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Thin shell theory</topic><topic>Welded structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fayard, J.-L.</creatorcontrib><creatorcontrib>Bignonnet, A.</creatorcontrib><creatorcontrib>Van, K. Dang</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fayard, J.-L.</au><au>Bignonnet, A.</au><au>Van, K. Dang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>1996-01-01</date><risdate>1996</risdate><volume>19</volume><issue>6</issue><spage>723</spage><epage>729</epage><pages>723-729</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><coden>FFESEY</coden><abstract>— For continuously welded structures subjected to cyclic loading, the highly stressed zones where cracks initiate and lead to failure are usually located at weld toes. At these critical points, called hot‐spots, the very local stress states are difficult to determine so that standard fatigue criteria are very difficult to apply for fatigue life prediction. This work presents a fatigue design criterion for continuously welded thin sheet structures, based on a unique S‐N curve. The approach, which refers to the hot‐spot stress concept, defines the design stress S as the geometrical stress amplitude at the hot‐spot. In practice, the geometrical stress state is calculated by means of the finite element method (FEM) using thin shell theory. Meshing rules for the welded connection, which can be applied methodically to any welding situation, allow the hot‐spot location, and therefore the design stress of any structure, to be determined. Experimental data and FEM calculations show that a unique S‐N curve can be obtained whatever the geometry of the welded structure and the loading mode.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1460-2695.1996.tb01317.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 1996-01, Vol.19 (6), p.723-729
issn 8756-758X
1460-2695
language eng
recordid cdi_hal_primary_oai_HAL_hal_00111564v1
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Design criteria
Engineering Sciences
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
FE Method
Hot-spot stresses
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Mechanics
Metals. Metallurgy
Physics
Thin shell theory
Welded structures
title FATIGUE DESIGN CRITERION FOR WELDED STRUCTURES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FATIGUE%20DESIGN%20CRITERION%20FOR%20WELDED%20STRUCTURES&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Fayard,%20J.-L.&rft.date=1996-01-01&rft.volume=19&rft.issue=6&rft.spage=723&rft.epage=729&rft.pages=723-729&rft.issn=8756-758X&rft.eissn=1460-2695&rft.coden=FFESEY&rft_id=info:doi/10.1111/j.1460-2695.1996.tb01317.x&rft_dat=%3Cproquest_hal_p%3E26159489%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26159489&rft_id=info:pmid/&rfr_iscdi=true