A classical dynamics method for H2 diffraction from metal surfaces

We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-04, Vol.122 (15), p.154706-154706
Hauptverfasser: Díaz, C, Busnengo, H F, Rivière, P, Farías, D, Nieto, P, Somers, M F, Kroes, G J, Salin, A, Martín, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154706
container_issue 15
container_start_page 154706
container_title The Journal of chemical physics
container_volume 122
creator Díaz, C
Busnengo, H F
Rivière, P
Farías, D
Nieto, P
Somers, M F
Kroes, G J
Salin, A
Martín, F
description We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonactivated dissociative chemisorption, respectively) using realistic potential energy surfaces obtained from first principles. Comparisons with experimental results and 6D quantum dynamical calculations show that, in general, the method is able to predict the relative intensity of the most important diffraction peaks. We therefore conclude that classical mechanics can be an efficient guide for experimentalists in the search for the most significant diffraction channels.
doi_str_mv 10.1063/1.1878613
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00108027v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67916166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2673-b13f969d891eefdbf906d5b2d5d42aa4a98f4ce1f1e30df889297c86ad91964a3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQQIMotlYP_gHZk-Bh60x2N5sca1ErFLzoOWTzQSO7TU26gv_eLV3saWDm8WAeIbcIcwRWPOIcec0ZFmdkisBFXjMB52QKQDEXDNiEXKX0BQBY0_KSTLASZcWqakqeFpluVUpeqzYzv1vVeZ2yzu43wWQuxGxFM-Odi0rvfdhmLobucB7o1EentE3X5MKpNtmbcc7I58vzx3KVr99f35aLda4pq4u8wcIJJgwXaK0zjRPATNVQU5mSKlUqwV2pLTq0BRjHuaCi1pwpI1CwUhUz8nD0blQrd9F3Kv7KoLxcLdbysBveAw60_sGBvT-yuxi-e5v2svNJ27ZVWxv6JFktkCFjJ6mOIaVo3b8ZQR7iSpRj3IG9G6V901lzIseaxR_8_3Iu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67916166</pqid></control><display><type>article</type><title>A classical dynamics method for H2 diffraction from metal surfaces</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Díaz, C ; Busnengo, H F ; Rivière, P ; Farías, D ; Nieto, P ; Somers, M F ; Kroes, G J ; Salin, A ; Martín, F</creator><creatorcontrib>Díaz, C ; Busnengo, H F ; Rivière, P ; Farías, D ; Nieto, P ; Somers, M F ; Kroes, G J ; Salin, A ; Martín, F</creatorcontrib><description>We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonactivated dissociative chemisorption, respectively) using realistic potential energy surfaces obtained from first principles. Comparisons with experimental results and 6D quantum dynamical calculations show that, in general, the method is able to predict the relative intensity of the most important diffraction peaks. We therefore conclude that classical mechanics can be an efficient guide for experimentalists in the search for the most significant diffraction channels.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1878613</identifier><identifier>PMID: 15945655</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical Sciences ; or physical chemistry ; Theoretical and</subject><ispartof>The Journal of chemical physics, 2005-04, Vol.122 (15), p.154706-154706</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2673-b13f969d891eefdbf906d5b2d5d42aa4a98f4ce1f1e30df889297c86ad91964a3</citedby><cites>FETCH-LOGICAL-c2673-b13f969d891eefdbf906d5b2d5d42aa4a98f4ce1f1e30df889297c86ad91964a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15945655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00108027$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Díaz, C</creatorcontrib><creatorcontrib>Busnengo, H F</creatorcontrib><creatorcontrib>Rivière, P</creatorcontrib><creatorcontrib>Farías, D</creatorcontrib><creatorcontrib>Nieto, P</creatorcontrib><creatorcontrib>Somers, M F</creatorcontrib><creatorcontrib>Kroes, G J</creatorcontrib><creatorcontrib>Salin, A</creatorcontrib><creatorcontrib>Martín, F</creatorcontrib><title>A classical dynamics method for H2 diffraction from metal surfaces</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonactivated dissociative chemisorption, respectively) using realistic potential energy surfaces obtained from first principles. Comparisons with experimental results and 6D quantum dynamical calculations show that, in general, the method is able to predict the relative intensity of the most important diffraction peaks. We therefore conclude that classical mechanics can be an efficient guide for experimentalists in the search for the most significant diffraction channels.</description><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQQIMotlYP_gHZk-Bh60x2N5sca1ErFLzoOWTzQSO7TU26gv_eLV3saWDm8WAeIbcIcwRWPOIcec0ZFmdkisBFXjMB52QKQDEXDNiEXKX0BQBY0_KSTLASZcWqakqeFpluVUpeqzYzv1vVeZ2yzu43wWQuxGxFM-Odi0rvfdhmLobucB7o1EentE3X5MKpNtmbcc7I58vzx3KVr99f35aLda4pq4u8wcIJJgwXaK0zjRPATNVQU5mSKlUqwV2pLTq0BRjHuaCi1pwpI1CwUhUz8nD0blQrd9F3Kv7KoLxcLdbysBveAw60_sGBvT-yuxi-e5v2svNJ27ZVWxv6JFktkCFjJ6mOIaVo3b8ZQR7iSpRj3IG9G6V901lzIseaxR_8_3Iu</recordid><startdate>20050415</startdate><enddate>20050415</enddate><creator>Díaz, C</creator><creator>Busnengo, H F</creator><creator>Rivière, P</creator><creator>Farías, D</creator><creator>Nieto, P</creator><creator>Somers, M F</creator><creator>Kroes, G J</creator><creator>Salin, A</creator><creator>Martín, F</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20050415</creationdate><title>A classical dynamics method for H2 diffraction from metal surfaces</title><author>Díaz, C ; Busnengo, H F ; Rivière, P ; Farías, D ; Nieto, P ; Somers, M F ; Kroes, G J ; Salin, A ; Martín, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2673-b13f969d891eefdbf906d5b2d5d42aa4a98f4ce1f1e30df889297c86ad91964a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz, C</creatorcontrib><creatorcontrib>Busnengo, H F</creatorcontrib><creatorcontrib>Rivière, P</creatorcontrib><creatorcontrib>Farías, D</creatorcontrib><creatorcontrib>Nieto, P</creatorcontrib><creatorcontrib>Somers, M F</creatorcontrib><creatorcontrib>Kroes, G J</creatorcontrib><creatorcontrib>Salin, A</creatorcontrib><creatorcontrib>Martín, F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz, C</au><au>Busnengo, H F</au><au>Rivière, P</au><au>Farías, D</au><au>Nieto, P</au><au>Somers, M F</au><au>Kroes, G J</au><au>Salin, A</au><au>Martín, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A classical dynamics method for H2 diffraction from metal surfaces</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-04-15</date><risdate>2005</risdate><volume>122</volume><issue>15</issue><spage>154706</spage><epage>154706</epage><pages>154706-154706</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonactivated dissociative chemisorption, respectively) using realistic potential energy surfaces obtained from first principles. Comparisons with experimental results and 6D quantum dynamical calculations show that, in general, the method is able to predict the relative intensity of the most important diffraction peaks. We therefore conclude that classical mechanics can be an efficient guide for experimentalists in the search for the most significant diffraction channels.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>15945655</pmid><doi>10.1063/1.1878613</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2005-04, Vol.122 (15), p.154706-154706
issn 0021-9606
1089-7690
language eng
recordid cdi_hal_primary_oai_HAL_hal_00108027v1
source AIP Journals Complete; AIP Digital Archive
subjects Chemical Sciences
or physical chemistry
Theoretical and
title A classical dynamics method for H2 diffraction from metal surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20classical%20dynamics%20method%20for%20H2%20diffraction%20from%20metal%20surfaces&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=D%C3%ADaz,%20C&rft.date=2005-04-15&rft.volume=122&rft.issue=15&rft.spage=154706&rft.epage=154706&rft.pages=154706-154706&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1878613&rft_dat=%3Cproquest_hal_p%3E67916166%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67916166&rft_id=info:pmid/15945655&rfr_iscdi=true