A classical dynamics method for H2 diffraction from metal surfaces
We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonacti...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2005-04, Vol.122 (15), p.154706-154706 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154706 |
---|---|
container_issue | 15 |
container_start_page | 154706 |
container_title | The Journal of chemical physics |
container_volume | 122 |
creator | Díaz, C Busnengo, H F Rivière, P Farías, D Nieto, P Somers, M F Kroes, G J Salin, A Martín, F |
description | We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonactivated dissociative chemisorption, respectively) using realistic potential energy surfaces obtained from first principles. Comparisons with experimental results and 6D quantum dynamical calculations show that, in general, the method is able to predict the relative intensity of the most important diffraction peaks. We therefore conclude that classical mechanics can be an efficient guide for experimentalists in the search for the most significant diffraction channels. |
doi_str_mv | 10.1063/1.1878613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00108027v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67916166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2673-b13f969d891eefdbf906d5b2d5d42aa4a98f4ce1f1e30df889297c86ad91964a3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQQIMotlYP_gHZk-Bh60x2N5sca1ErFLzoOWTzQSO7TU26gv_eLV3saWDm8WAeIbcIcwRWPOIcec0ZFmdkisBFXjMB52QKQDEXDNiEXKX0BQBY0_KSTLASZcWqakqeFpluVUpeqzYzv1vVeZ2yzu43wWQuxGxFM-Odi0rvfdhmLobucB7o1EentE3X5MKpNtmbcc7I58vzx3KVr99f35aLda4pq4u8wcIJJgwXaK0zjRPATNVQU5mSKlUqwV2pLTq0BRjHuaCi1pwpI1CwUhUz8nD0blQrd9F3Kv7KoLxcLdbysBveAw60_sGBvT-yuxi-e5v2svNJ27ZVWxv6JFktkCFjJ6mOIaVo3b8ZQR7iSpRj3IG9G6V901lzIseaxR_8_3Iu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67916166</pqid></control><display><type>article</type><title>A classical dynamics method for H2 diffraction from metal surfaces</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Díaz, C ; Busnengo, H F ; Rivière, P ; Farías, D ; Nieto, P ; Somers, M F ; Kroes, G J ; Salin, A ; Martín, F</creator><creatorcontrib>Díaz, C ; Busnengo, H F ; Rivière, P ; Farías, D ; Nieto, P ; Somers, M F ; Kroes, G J ; Salin, A ; Martín, F</creatorcontrib><description>We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonactivated dissociative chemisorption, respectively) using realistic potential energy surfaces obtained from first principles. Comparisons with experimental results and 6D quantum dynamical calculations show that, in general, the method is able to predict the relative intensity of the most important diffraction peaks. We therefore conclude that classical mechanics can be an efficient guide for experimentalists in the search for the most significant diffraction channels.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1878613</identifier><identifier>PMID: 15945655</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical Sciences ; or physical chemistry ; Theoretical and</subject><ispartof>The Journal of chemical physics, 2005-04, Vol.122 (15), p.154706-154706</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2673-b13f969d891eefdbf906d5b2d5d42aa4a98f4ce1f1e30df889297c86ad91964a3</citedby><cites>FETCH-LOGICAL-c2673-b13f969d891eefdbf906d5b2d5d42aa4a98f4ce1f1e30df889297c86ad91964a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15945655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00108027$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Díaz, C</creatorcontrib><creatorcontrib>Busnengo, H F</creatorcontrib><creatorcontrib>Rivière, P</creatorcontrib><creatorcontrib>Farías, D</creatorcontrib><creatorcontrib>Nieto, P</creatorcontrib><creatorcontrib>Somers, M F</creatorcontrib><creatorcontrib>Kroes, G J</creatorcontrib><creatorcontrib>Salin, A</creatorcontrib><creatorcontrib>Martín, F</creatorcontrib><title>A classical dynamics method for H2 diffraction from metal surfaces</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonactivated dissociative chemisorption, respectively) using realistic potential energy surfaces obtained from first principles. Comparisons with experimental results and 6D quantum dynamical calculations show that, in general, the method is able to predict the relative intensity of the most important diffraction peaks. We therefore conclude that classical mechanics can be an efficient guide for experimentalists in the search for the most significant diffraction channels.</description><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQQIMotlYP_gHZk-Bh60x2N5sca1ErFLzoOWTzQSO7TU26gv_eLV3saWDm8WAeIbcIcwRWPOIcec0ZFmdkisBFXjMB52QKQDEXDNiEXKX0BQBY0_KSTLASZcWqakqeFpluVUpeqzYzv1vVeZ2yzu43wWQuxGxFM-Odi0rvfdhmLobucB7o1EentE3X5MKpNtmbcc7I58vzx3KVr99f35aLda4pq4u8wcIJJgwXaK0zjRPATNVQU5mSKlUqwV2pLTq0BRjHuaCi1pwpI1CwUhUz8nD0blQrd9F3Kv7KoLxcLdbysBveAw60_sGBvT-yuxi-e5v2svNJ27ZVWxv6JFktkCFjJ6mOIaVo3b8ZQR7iSpRj3IG9G6V901lzIseaxR_8_3Iu</recordid><startdate>20050415</startdate><enddate>20050415</enddate><creator>Díaz, C</creator><creator>Busnengo, H F</creator><creator>Rivière, P</creator><creator>Farías, D</creator><creator>Nieto, P</creator><creator>Somers, M F</creator><creator>Kroes, G J</creator><creator>Salin, A</creator><creator>Martín, F</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20050415</creationdate><title>A classical dynamics method for H2 diffraction from metal surfaces</title><author>Díaz, C ; Busnengo, H F ; Rivière, P ; Farías, D ; Nieto, P ; Somers, M F ; Kroes, G J ; Salin, A ; Martín, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2673-b13f969d891eefdbf906d5b2d5d42aa4a98f4ce1f1e30df889297c86ad91964a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz, C</creatorcontrib><creatorcontrib>Busnengo, H F</creatorcontrib><creatorcontrib>Rivière, P</creatorcontrib><creatorcontrib>Farías, D</creatorcontrib><creatorcontrib>Nieto, P</creatorcontrib><creatorcontrib>Somers, M F</creatorcontrib><creatorcontrib>Kroes, G J</creatorcontrib><creatorcontrib>Salin, A</creatorcontrib><creatorcontrib>Martín, F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz, C</au><au>Busnengo, H F</au><au>Rivière, P</au><au>Farías, D</au><au>Nieto, P</au><au>Somers, M F</au><au>Kroes, G J</au><au>Salin, A</au><au>Martín, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A classical dynamics method for H2 diffraction from metal surfaces</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-04-15</date><risdate>2005</risdate><volume>122</volume><issue>15</issue><spage>154706</spage><epage>154706</epage><pages>154706-154706</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We present a discretization method that allows one to interpret measurements on diffraction of diatomic molecules from solid surfaces using six-dimensional (6D) classical trajectory calculations. It has been applied to the D2NiAl(110) and H2Pd(111) systems (which are models for activated and nonactivated dissociative chemisorption, respectively) using realistic potential energy surfaces obtained from first principles. Comparisons with experimental results and 6D quantum dynamical calculations show that, in general, the method is able to predict the relative intensity of the most important diffraction peaks. We therefore conclude that classical mechanics can be an efficient guide for experimentalists in the search for the most significant diffraction channels.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>15945655</pmid><doi>10.1063/1.1878613</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2005-04, Vol.122 (15), p.154706-154706 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00108027v1 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | Chemical Sciences or physical chemistry Theoretical and |
title | A classical dynamics method for H2 diffraction from metal surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20classical%20dynamics%20method%20for%20H2%20diffraction%20from%20metal%20surfaces&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=D%C3%ADaz,%20C&rft.date=2005-04-15&rft.volume=122&rft.issue=15&rft.spage=154706&rft.epage=154706&rft.pages=154706-154706&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1878613&rft_dat=%3Cproquest_hal_p%3E67916166%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67916166&rft_id=info:pmid/15945655&rfr_iscdi=true |