High-accuracy position and orientation measurement of extended two-dimensional surfaces by a phase-sensitive vision method
We introduced recently phase measurements usually performed in interferometry to the domain of image processing and intelligent vision [IEEE Trans. Instrum. Meas. 49, 867 (2000)]. Our purpose is to sense with a high accuracy the position, orientation, and displacement of two-dimensional (2D) surface...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2002-09, Vol.41 (26), p.5503-5511 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduced recently phase measurements usually performed in interferometry to the domain of image processing and intelligent vision [IEEE Trans. Instrum. Meas. 49, 867 (2000)]. Our purpose is to sense with a high accuracy the position, orientation, and displacement of two-dimensional (2D) surfaces observed by a static vision system. We report on significant improvements of the method. Experimental measurements reveal a peak-valley noise of approximately 10(-2) CCD pixel, corresponding approximately to a 10(-3) period of the phase reference pattern. Then the observation of 10 microm scaled features enables an accuracy of a few nm in the position sensing of the phase reference pattern for the extended 2D measurement range. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 2155-3165 |
DOI: | 10.1364/AO.41.005503 |