Conformally invariant fractals and potential theory
The multifractal (MF) distribution of the electrostatic potential near any conformally invariant fractal boundary, like a critical O(N) loop or a Q-state Potts cluster, is solved in two dimensions. The dimension (straight theta) of the boundary set with local wedge angle straight theta is (straight...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2000-02, Vol.84 (7), p.1363-1367 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1367 |
---|---|
container_issue | 7 |
container_start_page | 1363 |
container_title | Physical review letters |
container_volume | 84 |
creator | Duplantier, B |
description | The multifractal (MF) distribution of the electrostatic potential near any conformally invariant fractal boundary, like a critical O(N) loop or a Q-state Potts cluster, is solved in two dimensions. The dimension (straight theta) of the boundary set with local wedge angle straight theta is (straight theta) = pi / straight theta-25-c / 12 (pi-straight theta)(2) / straight theta(2pi-straight theta), with c the central charge of the model. As a corollary, the dimensions D(EP) of the external perimeter and D(H) of the hull of a Potts cluster obey the duality equation (D(EP)-1) (D(H)-1) = 1 / 4. A related covariant MF spectrum is obtained for self-avoiding walks anchored at cluster boundaries. |
doi_str_mv | 10.1103/PhysRevLett.84.1363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00087400v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859337548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-be0f605badea4ce432d5a820d6bcde9bd1e7e46d85afd4de1f2b80cd7242ca333</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4Mobk4_gSB91IfOS5M26aMMdUJBEX0OaXJlla6ZSTbot7djQ306uPv977gfIdcU5pQCu39bDeEddxXGOJd8TlnBTsiUgihTQSk_JVMARtMSQEzIRQhfAECzQp6TyZinIqdyStjC9Y3za911Q9L2O-1b3cek8dpE3YVE9zbZuIh9bHWXxBU6P1ySs2ac4dWxzsjn0-PHYplWr88vi4cqNYyVMa0RmgLyWlvU3CBnmc21zMAWtbFY1paiQF5YmevGcou0yWoJxoqMZ0Yzxmbk7rB3pTu18e1a-0E53arlQ6X2vfEhKTjAjo7s7YHdePe9xRDVug0Gu0736LZBUZmXjImcyxFlB9R4F4LH5nc3BbU3q_6ZVZKrvdkxdXM8sK3XaP8yR5XsB0fOd6k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859337548</pqid></control><display><type>article</type><title>Conformally invariant fractals and potential theory</title><source>American Physical Society Journals</source><creator>Duplantier, B</creator><creatorcontrib>Duplantier, B</creatorcontrib><description>The multifractal (MF) distribution of the electrostatic potential near any conformally invariant fractal boundary, like a critical O(N) loop or a Q-state Potts cluster, is solved in two dimensions. The dimension (straight theta) of the boundary set with local wedge angle straight theta is (straight theta) = pi / straight theta-25-c / 12 (pi-straight theta)(2) / straight theta(2pi-straight theta), with c the central charge of the model. As a corollary, the dimensions D(EP) of the external perimeter and D(H) of the hull of a Potts cluster obey the duality equation (D(EP)-1) (D(H)-1) = 1 / 4. A related covariant MF spectrum is obtained for self-avoiding walks anchored at cluster boundaries.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.84.1363</identifier><identifier>PMID: 11017518</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Condensed Matter ; General Physics ; Other ; Physics</subject><ispartof>Physical review letters, 2000-02, Vol.84 (7), p.1363-1367</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-be0f605badea4ce432d5a820d6bcde9bd1e7e46d85afd4de1f2b80cd7242ca333</citedby><cites>FETCH-LOGICAL-c339t-be0f605badea4ce432d5a820d6bcde9bd1e7e46d85afd4de1f2b80cd7242ca333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11017518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00087400$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duplantier, B</creatorcontrib><title>Conformally invariant fractals and potential theory</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The multifractal (MF) distribution of the electrostatic potential near any conformally invariant fractal boundary, like a critical O(N) loop or a Q-state Potts cluster, is solved in two dimensions. The dimension (straight theta) of the boundary set with local wedge angle straight theta is (straight theta) = pi / straight theta-25-c / 12 (pi-straight theta)(2) / straight theta(2pi-straight theta), with c the central charge of the model. As a corollary, the dimensions D(EP) of the external perimeter and D(H) of the hull of a Potts cluster obey the duality equation (D(EP)-1) (D(H)-1) = 1 / 4. A related covariant MF spectrum is obtained for self-avoiding walks anchored at cluster boundaries.</description><subject>Condensed Matter</subject><subject>General Physics</subject><subject>Other</subject><subject>Physics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAQx4Mobk4_gSB91IfOS5M26aMMdUJBEX0OaXJlla6ZSTbot7djQ306uPv977gfIdcU5pQCu39bDeEddxXGOJd8TlnBTsiUgihTQSk_JVMARtMSQEzIRQhfAECzQp6TyZinIqdyStjC9Y3za911Q9L2O-1b3cek8dpE3YVE9zbZuIh9bHWXxBU6P1ySs2ac4dWxzsjn0-PHYplWr88vi4cqNYyVMa0RmgLyWlvU3CBnmc21zMAWtbFY1paiQF5YmevGcou0yWoJxoqMZ0Yzxmbk7rB3pTu18e1a-0E53arlQ6X2vfEhKTjAjo7s7YHdePe9xRDVug0Gu0736LZBUZmXjImcyxFlB9R4F4LH5nc3BbU3q_6ZVZKrvdkxdXM8sK3XaP8yR5XsB0fOd6k</recordid><startdate>20000214</startdate><enddate>20000214</enddate><creator>Duplantier, B</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20000214</creationdate><title>Conformally invariant fractals and potential theory</title><author>Duplantier, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-be0f605badea4ce432d5a820d6bcde9bd1e7e46d85afd4de1f2b80cd7242ca333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Condensed Matter</topic><topic>General Physics</topic><topic>Other</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duplantier, B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duplantier, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformally invariant fractals and potential theory</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2000-02-14</date><risdate>2000</risdate><volume>84</volume><issue>7</issue><spage>1363</spage><epage>1367</epage><pages>1363-1367</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The multifractal (MF) distribution of the electrostatic potential near any conformally invariant fractal boundary, like a critical O(N) loop or a Q-state Potts cluster, is solved in two dimensions. The dimension (straight theta) of the boundary set with local wedge angle straight theta is (straight theta) = pi / straight theta-25-c / 12 (pi-straight theta)(2) / straight theta(2pi-straight theta), with c the central charge of the model. As a corollary, the dimensions D(EP) of the external perimeter and D(H) of the hull of a Potts cluster obey the duality equation (D(EP)-1) (D(H)-1) = 1 / 4. A related covariant MF spectrum is obtained for self-avoiding walks anchored at cluster boundaries.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>11017518</pmid><doi>10.1103/PhysRevLett.84.1363</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2000-02, Vol.84 (7), p.1363-1367 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00087400v1 |
source | American Physical Society Journals |
subjects | Condensed Matter General Physics Other Physics |
title | Conformally invariant fractals and potential theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformally%20invariant%20fractals%20and%20potential%20theory&rft.jtitle=Physical%20review%20letters&rft.au=Duplantier,%20B&rft.date=2000-02-14&rft.volume=84&rft.issue=7&rft.spage=1363&rft.epage=1367&rft.pages=1363-1367&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.84.1363&rft_dat=%3Cproquest_hal_p%3E1859337548%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859337548&rft_id=info:pmid/11017518&rfr_iscdi=true |