Numerical solution of the free boundary Bernoulli problem using a level set formulation

We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2005-09, Vol.194 (36), p.3934-3948
Hauptverfasser: Bouchon, F., Clain, S., Touzani, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3948
container_issue 36
container_start_page 3934
container_title Computer methods in applied mechanics and engineering
container_volume 194
creator Bouchon, F.
Clain, S.
Touzani, R.
description We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary conditions are handled accurately. In particular, the case of multiple solutions is treated.
doi_str_mv 10.1016/j.cma.2004.09.008
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00086529v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782504004694</els_id><sourcerecordid>29427449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-afecd029afe13ffac44bdd291a27fa8dcbb156616fd2e67536236898465892d03</originalsourceid><addsrcrecordid>eNp9kE9v3CAQxVGUSNn8-QC5cUmlHOwCtjEop3TVNpVW7aVVjgjDkLDCJgV7pX77Ym3U3sJlJOb33sw8hG4oqSmh_OO-NqOuGSFtTWRNiDhBGyp6WTHaiFO0KY2u6gXrztFFzntSnqBsg56-LyMkb3TAOYZl9nHC0eH5BbBLAHiIy2R1-oM_QZriEoLHrykOAUa8ZD89Y40DHKCoYcYupnEJejW5QmdOhwzXb_US_fry-ef2sdr9-Ppt-7CrTEfoXGkHxhImS6WNc9q07WAtk1Sz3mlhzTDQjnPKnWXA-67hrOFCipZ3QjJLmkt0d_R90UG9Jj-WXVXUXj0-7NT6tx7KOyYPtLAfjmy54PcCeVajzwZC0BPEJSsmW9a3rSwgPYImxZwTuH_OlKg1brVXJW61xq2ILDNE0dy-metc0nRJT8bn_0IueNPTpnD3Rw5KKgcPSWXjYTJgfQIzKxv9O1P-AvQVlRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29427449</pqid></control><display><type>article</type><title>Numerical solution of the free boundary Bernoulli problem using a level set formulation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bouchon, F. ; Clain, S. ; Touzani, R.</creator><creatorcontrib>Bouchon, F. ; Clain, S. ; Touzani, R.</creatorcontrib><description>We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary conditions are handled accurately. In particular, the case of multiple solutions is treated.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2004.09.008</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analysis of PDEs ; Bernoulli problem ; Exact sciences and technology ; Free boundary problem ; Fundamental areas of phenomenology (including applications) ; Level sets ; Mathematics ; Physics</subject><ispartof>Computer methods in applied mechanics and engineering, 2005-09, Vol.194 (36), p.3934-3948</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-afecd029afe13ffac44bdd291a27fa8dcbb156616fd2e67536236898465892d03</citedby><cites>FETCH-LOGICAL-c501t-afecd029afe13ffac44bdd291a27fa8dcbb156616fd2e67536236898465892d03</cites><orcidid>0000-0003-2295-5118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2004.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16863713$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00086529$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouchon, F.</creatorcontrib><creatorcontrib>Clain, S.</creatorcontrib><creatorcontrib>Touzani, R.</creatorcontrib><title>Numerical solution of the free boundary Bernoulli problem using a level set formulation</title><title>Computer methods in applied mechanics and engineering</title><description>We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary conditions are handled accurately. In particular, the case of multiple solutions is treated.</description><subject>Analysis of PDEs</subject><subject>Bernoulli problem</subject><subject>Exact sciences and technology</subject><subject>Free boundary problem</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Level sets</subject><subject>Mathematics</subject><subject>Physics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v3CAQxVGUSNn8-QC5cUmlHOwCtjEop3TVNpVW7aVVjgjDkLDCJgV7pX77Ym3U3sJlJOb33sw8hG4oqSmh_OO-NqOuGSFtTWRNiDhBGyp6WTHaiFO0KY2u6gXrztFFzntSnqBsg56-LyMkb3TAOYZl9nHC0eH5BbBLAHiIy2R1-oM_QZriEoLHrykOAUa8ZD89Y40DHKCoYcYupnEJejW5QmdOhwzXb_US_fry-ef2sdr9-Ppt-7CrTEfoXGkHxhImS6WNc9q07WAtk1Sz3mlhzTDQjnPKnWXA-67hrOFCipZ3QjJLmkt0d_R90UG9Jj-WXVXUXj0-7NT6tx7KOyYPtLAfjmy54PcCeVajzwZC0BPEJSsmW9a3rSwgPYImxZwTuH_OlKg1brVXJW61xq2ILDNE0dy-metc0nRJT8bn_0IueNPTpnD3Rw5KKgcPSWXjYTJgfQIzKxv9O1P-AvQVlRY</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Bouchon, F.</creator><creator>Clain, S.</creator><creator>Touzani, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2295-5118</orcidid></search><sort><creationdate>20050901</creationdate><title>Numerical solution of the free boundary Bernoulli problem using a level set formulation</title><author>Bouchon, F. ; Clain, S. ; Touzani, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-afecd029afe13ffac44bdd291a27fa8dcbb156616fd2e67536236898465892d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analysis of PDEs</topic><topic>Bernoulli problem</topic><topic>Exact sciences and technology</topic><topic>Free boundary problem</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Level sets</topic><topic>Mathematics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouchon, F.</creatorcontrib><creatorcontrib>Clain, S.</creatorcontrib><creatorcontrib>Touzani, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouchon, F.</au><au>Clain, S.</au><au>Touzani, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the free boundary Bernoulli problem using a level set formulation</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>194</volume><issue>36</issue><spage>3934</spage><epage>3948</epage><pages>3934-3948</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary conditions are handled accurately. In particular, the case of multiple solutions is treated.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2004.09.008</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2295-5118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2005-09, Vol.194 (36), p.3934-3948
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_00086529v1
source Elsevier ScienceDirect Journals Complete
subjects Analysis of PDEs
Bernoulli problem
Exact sciences and technology
Free boundary problem
Fundamental areas of phenomenology (including applications)
Level sets
Mathematics
Physics
title Numerical solution of the free boundary Bernoulli problem using a level set formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20free%20boundary%20Bernoulli%20problem%20using%20a%20level%20set%20formulation&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Bouchon,%20F.&rft.date=2005-09-01&rft.volume=194&rft.issue=36&rft.spage=3934&rft.epage=3948&rft.pages=3934-3948&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2004.09.008&rft_dat=%3Cproquest_hal_p%3E29427449%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29427449&rft_id=info:pmid/&rft_els_id=S0045782504004694&rfr_iscdi=true