Numerical solution of the free boundary Bernoulli problem using a level set formulation
We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary condi...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2005-09, Vol.194 (36), p.3934-3948 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3948 |
---|---|
container_issue | 36 |
container_start_page | 3934 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 194 |
creator | Bouchon, F. Clain, S. Touzani, R. |
description | We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary conditions are handled accurately. In particular, the case of multiple solutions is treated. |
doi_str_mv | 10.1016/j.cma.2004.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00086529v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782504004694</els_id><sourcerecordid>29427449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-afecd029afe13ffac44bdd291a27fa8dcbb156616fd2e67536236898465892d03</originalsourceid><addsrcrecordid>eNp9kE9v3CAQxVGUSNn8-QC5cUmlHOwCtjEop3TVNpVW7aVVjgjDkLDCJgV7pX77Ym3U3sJlJOb33sw8hG4oqSmh_OO-NqOuGSFtTWRNiDhBGyp6WTHaiFO0KY2u6gXrztFFzntSnqBsg56-LyMkb3TAOYZl9nHC0eH5BbBLAHiIy2R1-oM_QZriEoLHrykOAUa8ZD89Y40DHKCoYcYupnEJejW5QmdOhwzXb_US_fry-ef2sdr9-Ppt-7CrTEfoXGkHxhImS6WNc9q07WAtk1Sz3mlhzTDQjnPKnWXA-67hrOFCipZ3QjJLmkt0d_R90UG9Jj-WXVXUXj0-7NT6tx7KOyYPtLAfjmy54PcCeVajzwZC0BPEJSsmW9a3rSwgPYImxZwTuH_OlKg1brVXJW61xq2ILDNE0dy-metc0nRJT8bn_0IueNPTpnD3Rw5KKgcPSWXjYTJgfQIzKxv9O1P-AvQVlRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29427449</pqid></control><display><type>article</type><title>Numerical solution of the free boundary Bernoulli problem using a level set formulation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bouchon, F. ; Clain, S. ; Touzani, R.</creator><creatorcontrib>Bouchon, F. ; Clain, S. ; Touzani, R.</creatorcontrib><description>We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary conditions are handled accurately. In particular, the case of multiple solutions is treated.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2004.09.008</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analysis of PDEs ; Bernoulli problem ; Exact sciences and technology ; Free boundary problem ; Fundamental areas of phenomenology (including applications) ; Level sets ; Mathematics ; Physics</subject><ispartof>Computer methods in applied mechanics and engineering, 2005-09, Vol.194 (36), p.3934-3948</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-afecd029afe13ffac44bdd291a27fa8dcbb156616fd2e67536236898465892d03</citedby><cites>FETCH-LOGICAL-c501t-afecd029afe13ffac44bdd291a27fa8dcbb156616fd2e67536236898465892d03</cites><orcidid>0000-0003-2295-5118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2004.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16863713$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00086529$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouchon, F.</creatorcontrib><creatorcontrib>Clain, S.</creatorcontrib><creatorcontrib>Touzani, R.</creatorcontrib><title>Numerical solution of the free boundary Bernoulli problem using a level set formulation</title><title>Computer methods in applied mechanics and engineering</title><description>We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary conditions are handled accurately. In particular, the case of multiple solutions is treated.</description><subject>Analysis of PDEs</subject><subject>Bernoulli problem</subject><subject>Exact sciences and technology</subject><subject>Free boundary problem</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Level sets</subject><subject>Mathematics</subject><subject>Physics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v3CAQxVGUSNn8-QC5cUmlHOwCtjEop3TVNpVW7aVVjgjDkLDCJgV7pX77Ym3U3sJlJOb33sw8hG4oqSmh_OO-NqOuGSFtTWRNiDhBGyp6WTHaiFO0KY2u6gXrztFFzntSnqBsg56-LyMkb3TAOYZl9nHC0eH5BbBLAHiIy2R1-oM_QZriEoLHrykOAUa8ZD89Y40DHKCoYcYupnEJejW5QmdOhwzXb_US_fry-ef2sdr9-Ppt-7CrTEfoXGkHxhImS6WNc9q07WAtk1Sz3mlhzTDQjnPKnWXA-67hrOFCipZ3QjJLmkt0d_R90UG9Jj-WXVXUXj0-7NT6tx7KOyYPtLAfjmy54PcCeVajzwZC0BPEJSsmW9a3rSwgPYImxZwTuH_OlKg1brVXJW61xq2ILDNE0dy-metc0nRJT8bn_0IueNPTpnD3Rw5KKgcPSWXjYTJgfQIzKxv9O1P-AvQVlRY</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Bouchon, F.</creator><creator>Clain, S.</creator><creator>Touzani, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2295-5118</orcidid></search><sort><creationdate>20050901</creationdate><title>Numerical solution of the free boundary Bernoulli problem using a level set formulation</title><author>Bouchon, F. ; Clain, S. ; Touzani, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-afecd029afe13ffac44bdd291a27fa8dcbb156616fd2e67536236898465892d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analysis of PDEs</topic><topic>Bernoulli problem</topic><topic>Exact sciences and technology</topic><topic>Free boundary problem</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Level sets</topic><topic>Mathematics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouchon, F.</creatorcontrib><creatorcontrib>Clain, S.</creatorcontrib><creatorcontrib>Touzani, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouchon, F.</au><au>Clain, S.</au><au>Touzani, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the free boundary Bernoulli problem using a level set formulation</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>194</volume><issue>36</issue><spage>3934</spage><epage>3948</epage><pages>3934-3948</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary conditions are handled accurately. In particular, the case of multiple solutions is treated.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2004.09.008</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2295-5118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2005-09, Vol.194 (36), p.3934-3948 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00086529v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Analysis of PDEs Bernoulli problem Exact sciences and technology Free boundary problem Fundamental areas of phenomenology (including applications) Level sets Mathematics Physics |
title | Numerical solution of the free boundary Bernoulli problem using a level set formulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20free%20boundary%20Bernoulli%20problem%20using%20a%20level%20set%20formulation&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Bouchon,%20F.&rft.date=2005-09-01&rft.volume=194&rft.issue=36&rft.spage=3934&rft.epage=3948&rft.pages=3934-3948&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2004.09.008&rft_dat=%3Cproquest_hal_p%3E29427449%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29427449&rft_id=info:pmid/&rft_els_id=S0045782504004694&rfr_iscdi=true |