Mechanism of standing wave patterns in cardiac muscle
Recent experiments [R. A. Gray, Phys. Rev. Lett. 87, 168104 (2001)]] have revealed striking standing wave patterns in cardiac muscle. In excitable media, such as cardiac tissue where colliding waves annihilate, standing wave patterns result from a fully nonlinear mechanism. We present a possible phy...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2003-03, Vol.90 (12), p.124101-124101, Article 124101 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124101 |
---|---|
container_issue | 12 |
container_start_page | 124101 |
container_title | Physical review letters |
container_volume | 90 |
creator | Takagi, Seiji Pumir, Alain Kramer, Lorenz Krinsky, Valentin |
description | Recent experiments [R. A. Gray, Phys. Rev. Lett. 87, 168104 (2001)]] have revealed striking standing wave patterns in cardiac muscle. In excitable media, such as cardiac tissue where colliding waves annihilate, standing wave patterns result from a fully nonlinear mechanism. We present a possible physical mechanism explaining these patterns. The phenomenon does not depend on the precise excitable model chosen. Analogies are drawn with weak links in superconductors, and phase-slip solutions in the Ginzburg-Landau equations. |
doi_str_mv | 10.1103/physrevlett.90.124101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00023809v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73175179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-cde4b76ff8571953d547fbfb0633d34919f9c63f965940668e9bf8e3a6f747b43</originalsourceid><addsrcrecordid>eNpFkF1LwzAYhYMobk5_gtIrwYvOvMtXczmGOqGiiF6HNE1cpV82bWX_3swNvTpwOOe8vA9Cl4DnAJjctput7-xY2r6fy-AtKGA4QlPAQsYCgB6jKcYEYomxmKAz7z8xxrDgySma7CRJBJki9mTNRteFr6LGRb7XdV7UH9G3Hm3U6r63Xe2joo6M7vJCm6gavCntOTpxuvT24qAz9H5_97Zax-nzw-NqmcaGUdbHJrc0E9y5hAmQjOSMCpe5DHNCckIlSCcNJ05yJinmPLEyc4klmjtBRUbJDN3sdze6VG1XVLrbqkYXar1M1c4LLy1IguUIIXu9z7Zd8zVY36uq8MaWpa5tM3glCAgGQoYg2wdN1_jA0P0tA1Y7tuolsH21YxrYKhm8X7ahd3U4MGSVzf9bB5jkB3A1dso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73175179</pqid></control><display><type>article</type><title>Mechanism of standing wave patterns in cardiac muscle</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Takagi, Seiji ; Pumir, Alain ; Kramer, Lorenz ; Krinsky, Valentin</creator><creatorcontrib>Takagi, Seiji ; Pumir, Alain ; Kramer, Lorenz ; Krinsky, Valentin</creatorcontrib><description>Recent experiments [R. A. Gray, Phys. Rev. Lett. 87, 168104 (2001)]] have revealed striking standing wave patterns in cardiac muscle. In excitable media, such as cardiac tissue where colliding waves annihilate, standing wave patterns result from a fully nonlinear mechanism. We present a possible physical mechanism explaining these patterns. The phenomenon does not depend on the precise excitable model chosen. Analogies are drawn with weak links in superconductors, and phase-slip solutions in the Ginzburg-Landau equations.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.90.124101</identifier><identifier>PMID: 12688873</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Adaptation and Self-Organizing Systems ; Cardiology and cardiovascular system ; Chaotic Dynamics ; Computer Simulation ; Heart - physiology ; Human health and pathology ; Life Sciences ; Membrane Potentials - physiology ; Models, Biological ; Muscle Fibers, Skeletal - physiology ; Nonlinear Sciences</subject><ispartof>Physical review letters, 2003-03, Vol.90 (12), p.124101-124101, Article 124101</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-cde4b76ff8571953d547fbfb0633d34919f9c63f965940668e9bf8e3a6f747b43</citedby><cites>FETCH-LOGICAL-c545t-cde4b76ff8571953d547fbfb0633d34919f9c63f965940668e9bf8e3a6f747b43</cites><orcidid>0000-0001-9946-7353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12688873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00023809$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagi, Seiji</creatorcontrib><creatorcontrib>Pumir, Alain</creatorcontrib><creatorcontrib>Kramer, Lorenz</creatorcontrib><creatorcontrib>Krinsky, Valentin</creatorcontrib><title>Mechanism of standing wave patterns in cardiac muscle</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Recent experiments [R. A. Gray, Phys. Rev. Lett. 87, 168104 (2001)]] have revealed striking standing wave patterns in cardiac muscle. In excitable media, such as cardiac tissue where colliding waves annihilate, standing wave patterns result from a fully nonlinear mechanism. We present a possible physical mechanism explaining these patterns. The phenomenon does not depend on the precise excitable model chosen. Analogies are drawn with weak links in superconductors, and phase-slip solutions in the Ginzburg-Landau equations.</description><subject>Adaptation and Self-Organizing Systems</subject><subject>Cardiology and cardiovascular system</subject><subject>Chaotic Dynamics</subject><subject>Computer Simulation</subject><subject>Heart - physiology</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Membrane Potentials - physiology</subject><subject>Models, Biological</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Nonlinear Sciences</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkF1LwzAYhYMobk5_gtIrwYvOvMtXczmGOqGiiF6HNE1cpV82bWX_3swNvTpwOOe8vA9Cl4DnAJjctput7-xY2r6fy-AtKGA4QlPAQsYCgB6jKcYEYomxmKAz7z8xxrDgySma7CRJBJki9mTNRteFr6LGRb7XdV7UH9G3Hm3U6r63Xe2joo6M7vJCm6gavCntOTpxuvT24qAz9H5_97Zax-nzw-NqmcaGUdbHJrc0E9y5hAmQjOSMCpe5DHNCckIlSCcNJ05yJinmPLEyc4klmjtBRUbJDN3sdze6VG1XVLrbqkYXar1M1c4LLy1IguUIIXu9z7Zd8zVY36uq8MaWpa5tM3glCAgGQoYg2wdN1_jA0P0tA1Y7tuolsH21YxrYKhm8X7ahd3U4MGSVzf9bB5jkB3A1dso</recordid><startdate>20030328</startdate><enddate>20030328</enddate><creator>Takagi, Seiji</creator><creator>Pumir, Alain</creator><creator>Kramer, Lorenz</creator><creator>Krinsky, Valentin</creator><general>American Physical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9946-7353</orcidid></search><sort><creationdate>20030328</creationdate><title>Mechanism of standing wave patterns in cardiac muscle</title><author>Takagi, Seiji ; Pumir, Alain ; Kramer, Lorenz ; Krinsky, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-cde4b76ff8571953d547fbfb0633d34919f9c63f965940668e9bf8e3a6f747b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptation and Self-Organizing Systems</topic><topic>Cardiology and cardiovascular system</topic><topic>Chaotic Dynamics</topic><topic>Computer Simulation</topic><topic>Heart - physiology</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Membrane Potentials - physiology</topic><topic>Models, Biological</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Nonlinear Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagi, Seiji</creatorcontrib><creatorcontrib>Pumir, Alain</creatorcontrib><creatorcontrib>Kramer, Lorenz</creatorcontrib><creatorcontrib>Krinsky, Valentin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagi, Seiji</au><au>Pumir, Alain</au><au>Kramer, Lorenz</au><au>Krinsky, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of standing wave patterns in cardiac muscle</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2003-03-28</date><risdate>2003</risdate><volume>90</volume><issue>12</issue><spage>124101</spage><epage>124101</epage><pages>124101-124101</pages><artnum>124101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Recent experiments [R. A. Gray, Phys. Rev. Lett. 87, 168104 (2001)]] have revealed striking standing wave patterns in cardiac muscle. In excitable media, such as cardiac tissue where colliding waves annihilate, standing wave patterns result from a fully nonlinear mechanism. We present a possible physical mechanism explaining these patterns. The phenomenon does not depend on the precise excitable model chosen. Analogies are drawn with weak links in superconductors, and phase-slip solutions in the Ginzburg-Landau equations.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>12688873</pmid><doi>10.1103/physrevlett.90.124101</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9946-7353</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2003-03, Vol.90 (12), p.124101-124101, Article 124101 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00023809v1 |
source | MEDLINE; American Physical Society Journals |
subjects | Adaptation and Self-Organizing Systems Cardiology and cardiovascular system Chaotic Dynamics Computer Simulation Heart - physiology Human health and pathology Life Sciences Membrane Potentials - physiology Models, Biological Muscle Fibers, Skeletal - physiology Nonlinear Sciences |
title | Mechanism of standing wave patterns in cardiac muscle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20standing%20wave%20patterns%20in%20cardiac%20muscle&rft.jtitle=Physical%20review%20letters&rft.au=Takagi,%20Seiji&rft.date=2003-03-28&rft.volume=90&rft.issue=12&rft.spage=124101&rft.epage=124101&rft.pages=124101-124101&rft.artnum=124101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.90.124101&rft_dat=%3Cproquest_hal_p%3E73175179%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73175179&rft_id=info:pmid/12688873&rfr_iscdi=true |