Critical failure ORC: Improving model accuracy through enhanced model generation

Ensuring robust patterning after OPC is becoming more and more difficult due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of nor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2006-04, Vol.83 (4), p.1017-1022
Hauptverfasser: Borjon, Amandine, Belledent, Jérôme, Trouiller, Yorick, Patterson, Kyle, Lucas, Kevin, Gardin, Christian, Couderc, Christophe, Rody, Yves, Sundermann, Frank, Urbani, Jean-Christophe, Baron, Stanislas, Foussadier, Frank, Schiavone, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022
container_issue 4
container_start_page 1017
container_title Microelectronic engineering
container_volume 83
creator Borjon, Amandine
Belledent, Jérôme
Trouiller, Yorick
Patterson, Kyle
Lucas, Kevin
Gardin, Christian
Couderc, Christophe
Rody, Yves
Sundermann, Frank
Urbani, Jean-Christophe
Baron, Stanislas
Foussadier, Frank
Schiavone, Patrick
description Ensuring robust patterning after OPC is becoming more and more difficult due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of normal process variations. As a result, post-OPC verification methods have become indispensable tools for avoiding pattern printing issues. A post-OPC verification technique known as critical failure optical rule checking (CFORC) was recently introduced and has proven its efficiency for detecting potential printing issues through the entire process window [S.D. Shang et al., Proc. SPIE 5040 (2003); J. Belledent et al., Proc. SPIE 5377 (2004); A. Borjon et al., Proc. SPIE 5754 (2005)]. This methodology uses optical parameters from aerial image simulations at single process condition. A numerical model, build using support vector machine (SVM) principle [The Nature of Statistical Learning Theory, second ed., Springer, (1995)], correlates these optical parameters with experimental data taken throughout the process window to predict printing failures. This statistical method however leads to some false predictions. Although false predictions may be unavoidable in statistical methodologies, it is possible to lower their rate of occurrence. In this study, concentrated on contact layer patterning for the 90 nm node and the poly layer patterning for the 65 nm node, the accuracy of CFORC models is improved through several approaches: enhancing the normalization algorithm, optimization of fitting parameters and optimizing the parameter space coverage.
doi_str_mv 10.1016/j.mee.2006.01.034
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00023226v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016793170600044X</els_id><sourcerecordid>29163849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-62d5268b0568b20bd469c6db3bd4ff29895f1c56b32038f145fdc2d21a1f25833</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4G42Ci5mzGUmk9FVKWoLhYroOmQyJ23KXGoyU-jbm9KiO1e5fefPOR9CtwQnBBP-uEkagIRizBNMEszSMzQiImdxlnFxjkaByeOCkfwSXXm_weGcYjFC71Nne6tVHRll68FBtPyYPkXzZuu6nW1XUdNVUEdK68EpvY_6teuG1TqCdq1aDdXpfQUtONXbrr1GF0bVHm5O6xh9vb58TmfxYvk2n04WsWYF7WNOq4xyUeLQXklxWaW80LwqWdgZQwtRZIbojJeMYiYMSTNTaVpRooihmWBsjB6OuWtVy62zjXJ72SkrZ5OFPNxhjCmjlO9IYO-PbBjqewDfy8Z6DXWtWugGL2lBOBNpEUByBLXrvHdgfpMJlgfPciODZ3nwLDGRwXOouTuFKx88Ghe8WP9XmOc5S1MRuOcjB8HKzoKTXls4OLQOdC-rzv7zyw9-yJE6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29163849</pqid></control><display><type>article</type><title>Critical failure ORC: Improving model accuracy through enhanced model generation</title><source>Elsevier ScienceDirect Journals</source><creator>Borjon, Amandine ; Belledent, Jérôme ; Trouiller, Yorick ; Patterson, Kyle ; Lucas, Kevin ; Gardin, Christian ; Couderc, Christophe ; Rody, Yves ; Sundermann, Frank ; Urbani, Jean-Christophe ; Baron, Stanislas ; Foussadier, Frank ; Schiavone, Patrick</creator><creatorcontrib>Borjon, Amandine ; Belledent, Jérôme ; Trouiller, Yorick ; Patterson, Kyle ; Lucas, Kevin ; Gardin, Christian ; Couderc, Christophe ; Rody, Yves ; Sundermann, Frank ; Urbani, Jean-Christophe ; Baron, Stanislas ; Foussadier, Frank ; Schiavone, Patrick</creatorcontrib><description>Ensuring robust patterning after OPC is becoming more and more difficult due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of normal process variations. As a result, post-OPC verification methods have become indispensable tools for avoiding pattern printing issues. A post-OPC verification technique known as critical failure optical rule checking (CFORC) was recently introduced and has proven its efficiency for detecting potential printing issues through the entire process window [S.D. Shang et al., Proc. SPIE 5040 (2003); J. Belledent et al., Proc. SPIE 5377 (2004); A. Borjon et al., Proc. SPIE 5754 (2005)]. This methodology uses optical parameters from aerial image simulations at single process condition. A numerical model, build using support vector machine (SVM) principle [The Nature of Statistical Learning Theory, second ed., Springer, (1995)], correlates these optical parameters with experimental data taken throughout the process window to predict printing failures. This statistical method however leads to some false predictions. Although false predictions may be unavoidable in statistical methodologies, it is possible to lower their rate of occurrence. In this study, concentrated on contact layer patterning for the 90 nm node and the poly layer patterning for the 65 nm node, the accuracy of CFORC models is improved through several approaches: enhancing the normalization algorithm, optimization of fitting parameters and optimizing the parameter space coverage.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2006.01.034</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Failure prediction ; Microelectronic fabrication (materials and surfaces technology) ; OPC ; ORC ; Process window ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SVM ; Testing, measurement, noise and reliability</subject><ispartof>Microelectronic engineering, 2006-04, Vol.83 (4), p.1017-1022</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-62d5268b0568b20bd469c6db3bd4ff29895f1c56b32038f145fdc2d21a1f25833</citedby><orcidid>0000-0002-0850-7127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016793170600044X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17773448$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00023226$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Borjon, Amandine</creatorcontrib><creatorcontrib>Belledent, Jérôme</creatorcontrib><creatorcontrib>Trouiller, Yorick</creatorcontrib><creatorcontrib>Patterson, Kyle</creatorcontrib><creatorcontrib>Lucas, Kevin</creatorcontrib><creatorcontrib>Gardin, Christian</creatorcontrib><creatorcontrib>Couderc, Christophe</creatorcontrib><creatorcontrib>Rody, Yves</creatorcontrib><creatorcontrib>Sundermann, Frank</creatorcontrib><creatorcontrib>Urbani, Jean-Christophe</creatorcontrib><creatorcontrib>Baron, Stanislas</creatorcontrib><creatorcontrib>Foussadier, Frank</creatorcontrib><creatorcontrib>Schiavone, Patrick</creatorcontrib><title>Critical failure ORC: Improving model accuracy through enhanced model generation</title><title>Microelectronic engineering</title><description>Ensuring robust patterning after OPC is becoming more and more difficult due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of normal process variations. As a result, post-OPC verification methods have become indispensable tools for avoiding pattern printing issues. A post-OPC verification technique known as critical failure optical rule checking (CFORC) was recently introduced and has proven its efficiency for detecting potential printing issues through the entire process window [S.D. Shang et al., Proc. SPIE 5040 (2003); J. Belledent et al., Proc. SPIE 5377 (2004); A. Borjon et al., Proc. SPIE 5754 (2005)]. This methodology uses optical parameters from aerial image simulations at single process condition. A numerical model, build using support vector machine (SVM) principle [The Nature of Statistical Learning Theory, second ed., Springer, (1995)], correlates these optical parameters with experimental data taken throughout the process window to predict printing failures. This statistical method however leads to some false predictions. Although false predictions may be unavoidable in statistical methodologies, it is possible to lower their rate of occurrence. In this study, concentrated on contact layer patterning for the 90 nm node and the poly layer patterning for the 65 nm node, the accuracy of CFORC models is improved through several approaches: enhancing the normalization algorithm, optimization of fitting parameters and optimizing the parameter space coverage.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Failure prediction</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>OPC</subject><subject>ORC</subject><subject>Process window</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SVM</subject><subject>Testing, measurement, noise and reliability</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4G42Ci5mzGUmk9FVKWoLhYroOmQyJ23KXGoyU-jbm9KiO1e5fefPOR9CtwQnBBP-uEkagIRizBNMEszSMzQiImdxlnFxjkaByeOCkfwSXXm_weGcYjFC71Nne6tVHRll68FBtPyYPkXzZuu6nW1XUdNVUEdK68EpvY_6teuG1TqCdq1aDdXpfQUtONXbrr1GF0bVHm5O6xh9vb58TmfxYvk2n04WsWYF7WNOq4xyUeLQXklxWaW80LwqWdgZQwtRZIbojJeMYiYMSTNTaVpRooihmWBsjB6OuWtVy62zjXJ72SkrZ5OFPNxhjCmjlO9IYO-PbBjqewDfy8Z6DXWtWugGL2lBOBNpEUByBLXrvHdgfpMJlgfPciODZ3nwLDGRwXOouTuFKx88Ghe8WP9XmOc5S1MRuOcjB8HKzoKTXls4OLQOdC-rzv7zyw9-yJE6</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Borjon, Amandine</creator><creator>Belledent, Jérôme</creator><creator>Trouiller, Yorick</creator><creator>Patterson, Kyle</creator><creator>Lucas, Kevin</creator><creator>Gardin, Christian</creator><creator>Couderc, Christophe</creator><creator>Rody, Yves</creator><creator>Sundermann, Frank</creator><creator>Urbani, Jean-Christophe</creator><creator>Baron, Stanislas</creator><creator>Foussadier, Frank</creator><creator>Schiavone, Patrick</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0850-7127</orcidid></search><sort><creationdate>20060401</creationdate><title>Critical failure ORC: Improving model accuracy through enhanced model generation</title><author>Borjon, Amandine ; Belledent, Jérôme ; Trouiller, Yorick ; Patterson, Kyle ; Lucas, Kevin ; Gardin, Christian ; Couderc, Christophe ; Rody, Yves ; Sundermann, Frank ; Urbani, Jean-Christophe ; Baron, Stanislas ; Foussadier, Frank ; Schiavone, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-62d5268b0568b20bd469c6db3bd4ff29895f1c56b32038f145fdc2d21a1f25833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Failure prediction</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>OPC</topic><topic>ORC</topic><topic>Process window</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SVM</topic><topic>Testing, measurement, noise and reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borjon, Amandine</creatorcontrib><creatorcontrib>Belledent, Jérôme</creatorcontrib><creatorcontrib>Trouiller, Yorick</creatorcontrib><creatorcontrib>Patterson, Kyle</creatorcontrib><creatorcontrib>Lucas, Kevin</creatorcontrib><creatorcontrib>Gardin, Christian</creatorcontrib><creatorcontrib>Couderc, Christophe</creatorcontrib><creatorcontrib>Rody, Yves</creatorcontrib><creatorcontrib>Sundermann, Frank</creatorcontrib><creatorcontrib>Urbani, Jean-Christophe</creatorcontrib><creatorcontrib>Baron, Stanislas</creatorcontrib><creatorcontrib>Foussadier, Frank</creatorcontrib><creatorcontrib>Schiavone, Patrick</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borjon, Amandine</au><au>Belledent, Jérôme</au><au>Trouiller, Yorick</au><au>Patterson, Kyle</au><au>Lucas, Kevin</au><au>Gardin, Christian</au><au>Couderc, Christophe</au><au>Rody, Yves</au><au>Sundermann, Frank</au><au>Urbani, Jean-Christophe</au><au>Baron, Stanislas</au><au>Foussadier, Frank</au><au>Schiavone, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical failure ORC: Improving model accuracy through enhanced model generation</atitle><jtitle>Microelectronic engineering</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>83</volume><issue>4</issue><spage>1017</spage><epage>1022</epage><pages>1017-1022</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>Ensuring robust patterning after OPC is becoming more and more difficult due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of normal process variations. As a result, post-OPC verification methods have become indispensable tools for avoiding pattern printing issues. A post-OPC verification technique known as critical failure optical rule checking (CFORC) was recently introduced and has proven its efficiency for detecting potential printing issues through the entire process window [S.D. Shang et al., Proc. SPIE 5040 (2003); J. Belledent et al., Proc. SPIE 5377 (2004); A. Borjon et al., Proc. SPIE 5754 (2005)]. This methodology uses optical parameters from aerial image simulations at single process condition. A numerical model, build using support vector machine (SVM) principle [The Nature of Statistical Learning Theory, second ed., Springer, (1995)], correlates these optical parameters with experimental data taken throughout the process window to predict printing failures. This statistical method however leads to some false predictions. Although false predictions may be unavoidable in statistical methodologies, it is possible to lower their rate of occurrence. In this study, concentrated on contact layer patterning for the 90 nm node and the poly layer patterning for the 65 nm node, the accuracy of CFORC models is improved through several approaches: enhancing the normalization algorithm, optimization of fitting parameters and optimizing the parameter space coverage.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2006.01.034</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0850-7127</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2006-04, Vol.83 (4), p.1017-1022
issn 0167-9317
1873-5568
language eng
recordid cdi_hal_primary_oai_HAL_hal_00023226v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Electronics
Exact sciences and technology
Failure prediction
Microelectronic fabrication (materials and surfaces technology)
OPC
ORC
Process window
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
SVM
Testing, measurement, noise and reliability
title Critical failure ORC: Improving model accuracy through enhanced model generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20failure%20ORC:%20Improving%20model%20accuracy%20through%20enhanced%20model%20generation&rft.jtitle=Microelectronic%20engineering&rft.au=Borjon,%20Amandine&rft.date=2006-04-01&rft.volume=83&rft.issue=4&rft.spage=1017&rft.epage=1022&rft.pages=1017-1022&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2006.01.034&rft_dat=%3Cproquest_hal_p%3E29163849%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29163849&rft_id=info:pmid/&rft_els_id=S016793170600044X&rfr_iscdi=true