Critical failure ORC: Improving model accuracy through enhanced model generation
Ensuring robust patterning after OPC is becoming more and more difficult due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of nor...
Gespeichert in:
Veröffentlicht in: | Microelectronic engineering 2006-04, Vol.83 (4), p.1017-1022 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1022 |
---|---|
container_issue | 4 |
container_start_page | 1017 |
container_title | Microelectronic engineering |
container_volume | 83 |
creator | Borjon, Amandine Belledent, Jérôme Trouiller, Yorick Patterson, Kyle Lucas, Kevin Gardin, Christian Couderc, Christophe Rody, Yves Sundermann, Frank Urbani, Jean-Christophe Baron, Stanislas Foussadier, Frank Schiavone, Patrick |
description | Ensuring robust patterning after OPC is becoming more and more difficult due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of normal process variations. As a result, post-OPC verification methods have become indispensable tools for avoiding pattern printing issues. A post-OPC verification technique known as critical failure optical rule checking (CFORC) was recently introduced and has proven its efficiency for detecting potential printing issues through the entire process window [S.D. Shang et al., Proc. SPIE 5040 (2003); J. Belledent et al., Proc. SPIE 5377 (2004); A. Borjon et al., Proc. SPIE 5754 (2005)]. This methodology uses optical parameters from aerial image simulations at single process condition. A numerical model, build using support vector machine (SVM) principle [The Nature of Statistical Learning Theory, second ed., Springer, (1995)], correlates these optical parameters with experimental data taken throughout the process window to predict printing failures.
This statistical method however leads to some false predictions. Although false predictions may be unavoidable in statistical methodologies, it is possible to lower their rate of occurrence. In this study, concentrated on contact layer patterning for the 90
nm node and the poly layer patterning for the 65
nm node, the accuracy of CFORC models is improved through several approaches: enhancing the normalization algorithm, optimization of fitting parameters and optimizing the parameter space coverage. |
doi_str_mv | 10.1016/j.mee.2006.01.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00023226v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016793170600044X</els_id><sourcerecordid>29163849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-62d5268b0568b20bd469c6db3bd4ff29895f1c56b32038f145fdc2d21a1f25833</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4G42Ci5mzGUmk9FVKWoLhYroOmQyJ23KXGoyU-jbm9KiO1e5fefPOR9CtwQnBBP-uEkagIRizBNMEszSMzQiImdxlnFxjkaByeOCkfwSXXm_weGcYjFC71Nne6tVHRll68FBtPyYPkXzZuu6nW1XUdNVUEdK68EpvY_6teuG1TqCdq1aDdXpfQUtONXbrr1GF0bVHm5O6xh9vb58TmfxYvk2n04WsWYF7WNOq4xyUeLQXklxWaW80LwqWdgZQwtRZIbojJeMYiYMSTNTaVpRooihmWBsjB6OuWtVy62zjXJ72SkrZ5OFPNxhjCmjlO9IYO-PbBjqewDfy8Z6DXWtWugGL2lBOBNpEUByBLXrvHdgfpMJlgfPciODZ3nwLDGRwXOouTuFKx88Ghe8WP9XmOc5S1MRuOcjB8HKzoKTXls4OLQOdC-rzv7zyw9-yJE6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29163849</pqid></control><display><type>article</type><title>Critical failure ORC: Improving model accuracy through enhanced model generation</title><source>Elsevier ScienceDirect Journals</source><creator>Borjon, Amandine ; Belledent, Jérôme ; Trouiller, Yorick ; Patterson, Kyle ; Lucas, Kevin ; Gardin, Christian ; Couderc, Christophe ; Rody, Yves ; Sundermann, Frank ; Urbani, Jean-Christophe ; Baron, Stanislas ; Foussadier, Frank ; Schiavone, Patrick</creator><creatorcontrib>Borjon, Amandine ; Belledent, Jérôme ; Trouiller, Yorick ; Patterson, Kyle ; Lucas, Kevin ; Gardin, Christian ; Couderc, Christophe ; Rody, Yves ; Sundermann, Frank ; Urbani, Jean-Christophe ; Baron, Stanislas ; Foussadier, Frank ; Schiavone, Patrick</creatorcontrib><description>Ensuring robust patterning after OPC is becoming more and more difficult due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of normal process variations. As a result, post-OPC verification methods have become indispensable tools for avoiding pattern printing issues. A post-OPC verification technique known as critical failure optical rule checking (CFORC) was recently introduced and has proven its efficiency for detecting potential printing issues through the entire process window [S.D. Shang et al., Proc. SPIE 5040 (2003); J. Belledent et al., Proc. SPIE 5377 (2004); A. Borjon et al., Proc. SPIE 5754 (2005)]. This methodology uses optical parameters from aerial image simulations at single process condition. A numerical model, build using support vector machine (SVM) principle [The Nature of Statistical Learning Theory, second ed., Springer, (1995)], correlates these optical parameters with experimental data taken throughout the process window to predict printing failures.
This statistical method however leads to some false predictions. Although false predictions may be unavoidable in statistical methodologies, it is possible to lower their rate of occurrence. In this study, concentrated on contact layer patterning for the 90
nm node and the poly layer patterning for the 65
nm node, the accuracy of CFORC models is improved through several approaches: enhancing the normalization algorithm, optimization of fitting parameters and optimizing the parameter space coverage.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2006.01.034</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Failure prediction ; Microelectronic fabrication (materials and surfaces technology) ; OPC ; ORC ; Process window ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SVM ; Testing, measurement, noise and reliability</subject><ispartof>Microelectronic engineering, 2006-04, Vol.83 (4), p.1017-1022</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-62d5268b0568b20bd469c6db3bd4ff29895f1c56b32038f145fdc2d21a1f25833</citedby><orcidid>0000-0002-0850-7127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016793170600044X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17773448$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00023226$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Borjon, Amandine</creatorcontrib><creatorcontrib>Belledent, Jérôme</creatorcontrib><creatorcontrib>Trouiller, Yorick</creatorcontrib><creatorcontrib>Patterson, Kyle</creatorcontrib><creatorcontrib>Lucas, Kevin</creatorcontrib><creatorcontrib>Gardin, Christian</creatorcontrib><creatorcontrib>Couderc, Christophe</creatorcontrib><creatorcontrib>Rody, Yves</creatorcontrib><creatorcontrib>Sundermann, Frank</creatorcontrib><creatorcontrib>Urbani, Jean-Christophe</creatorcontrib><creatorcontrib>Baron, Stanislas</creatorcontrib><creatorcontrib>Foussadier, Frank</creatorcontrib><creatorcontrib>Schiavone, Patrick</creatorcontrib><title>Critical failure ORC: Improving model accuracy through enhanced model generation</title><title>Microelectronic engineering</title><description>Ensuring robust patterning after OPC is becoming more and more difficult due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of normal process variations. As a result, post-OPC verification methods have become indispensable tools for avoiding pattern printing issues. A post-OPC verification technique known as critical failure optical rule checking (CFORC) was recently introduced and has proven its efficiency for detecting potential printing issues through the entire process window [S.D. Shang et al., Proc. SPIE 5040 (2003); J. Belledent et al., Proc. SPIE 5377 (2004); A. Borjon et al., Proc. SPIE 5754 (2005)]. This methodology uses optical parameters from aerial image simulations at single process condition. A numerical model, build using support vector machine (SVM) principle [The Nature of Statistical Learning Theory, second ed., Springer, (1995)], correlates these optical parameters with experimental data taken throughout the process window to predict printing failures.
This statistical method however leads to some false predictions. Although false predictions may be unavoidable in statistical methodologies, it is possible to lower their rate of occurrence. In this study, concentrated on contact layer patterning for the 90
nm node and the poly layer patterning for the 65
nm node, the accuracy of CFORC models is improved through several approaches: enhancing the normalization algorithm, optimization of fitting parameters and optimizing the parameter space coverage.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Failure prediction</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>OPC</subject><subject>ORC</subject><subject>Process window</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SVM</subject><subject>Testing, measurement, noise and reliability</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4G42Ci5mzGUmk9FVKWoLhYroOmQyJ23KXGoyU-jbm9KiO1e5fefPOR9CtwQnBBP-uEkagIRizBNMEszSMzQiImdxlnFxjkaByeOCkfwSXXm_weGcYjFC71Nne6tVHRll68FBtPyYPkXzZuu6nW1XUdNVUEdK68EpvY_6teuG1TqCdq1aDdXpfQUtONXbrr1GF0bVHm5O6xh9vb58TmfxYvk2n04WsWYF7WNOq4xyUeLQXklxWaW80LwqWdgZQwtRZIbojJeMYiYMSTNTaVpRooihmWBsjB6OuWtVy62zjXJ72SkrZ5OFPNxhjCmjlO9IYO-PbBjqewDfy8Z6DXWtWugGL2lBOBNpEUByBLXrvHdgfpMJlgfPciODZ3nwLDGRwXOouTuFKx88Ghe8WP9XmOc5S1MRuOcjB8HKzoKTXls4OLQOdC-rzv7zyw9-yJE6</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Borjon, Amandine</creator><creator>Belledent, Jérôme</creator><creator>Trouiller, Yorick</creator><creator>Patterson, Kyle</creator><creator>Lucas, Kevin</creator><creator>Gardin, Christian</creator><creator>Couderc, Christophe</creator><creator>Rody, Yves</creator><creator>Sundermann, Frank</creator><creator>Urbani, Jean-Christophe</creator><creator>Baron, Stanislas</creator><creator>Foussadier, Frank</creator><creator>Schiavone, Patrick</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0850-7127</orcidid></search><sort><creationdate>20060401</creationdate><title>Critical failure ORC: Improving model accuracy through enhanced model generation</title><author>Borjon, Amandine ; Belledent, Jérôme ; Trouiller, Yorick ; Patterson, Kyle ; Lucas, Kevin ; Gardin, Christian ; Couderc, Christophe ; Rody, Yves ; Sundermann, Frank ; Urbani, Jean-Christophe ; Baron, Stanislas ; Foussadier, Frank ; Schiavone, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-62d5268b0568b20bd469c6db3bd4ff29895f1c56b32038f145fdc2d21a1f25833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Failure prediction</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>OPC</topic><topic>ORC</topic><topic>Process window</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SVM</topic><topic>Testing, measurement, noise and reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borjon, Amandine</creatorcontrib><creatorcontrib>Belledent, Jérôme</creatorcontrib><creatorcontrib>Trouiller, Yorick</creatorcontrib><creatorcontrib>Patterson, Kyle</creatorcontrib><creatorcontrib>Lucas, Kevin</creatorcontrib><creatorcontrib>Gardin, Christian</creatorcontrib><creatorcontrib>Couderc, Christophe</creatorcontrib><creatorcontrib>Rody, Yves</creatorcontrib><creatorcontrib>Sundermann, Frank</creatorcontrib><creatorcontrib>Urbani, Jean-Christophe</creatorcontrib><creatorcontrib>Baron, Stanislas</creatorcontrib><creatorcontrib>Foussadier, Frank</creatorcontrib><creatorcontrib>Schiavone, Patrick</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borjon, Amandine</au><au>Belledent, Jérôme</au><au>Trouiller, Yorick</au><au>Patterson, Kyle</au><au>Lucas, Kevin</au><au>Gardin, Christian</au><au>Couderc, Christophe</au><au>Rody, Yves</au><au>Sundermann, Frank</au><au>Urbani, Jean-Christophe</au><au>Baron, Stanislas</au><au>Foussadier, Frank</au><au>Schiavone, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical failure ORC: Improving model accuracy through enhanced model generation</atitle><jtitle>Microelectronic engineering</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>83</volume><issue>4</issue><spage>1017</spage><epage>1022</epage><pages>1017-1022</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>Ensuring robust patterning after OPC is becoming more and more difficult due to the continuous reduction of layout dimensions and diminishing process windows associated with each successive lithographic generation. Lithographers must guarantee high imaging fidelity throughout the entire range of normal process variations. As a result, post-OPC verification methods have become indispensable tools for avoiding pattern printing issues. A post-OPC verification technique known as critical failure optical rule checking (CFORC) was recently introduced and has proven its efficiency for detecting potential printing issues through the entire process window [S.D. Shang et al., Proc. SPIE 5040 (2003); J. Belledent et al., Proc. SPIE 5377 (2004); A. Borjon et al., Proc. SPIE 5754 (2005)]. This methodology uses optical parameters from aerial image simulations at single process condition. A numerical model, build using support vector machine (SVM) principle [The Nature of Statistical Learning Theory, second ed., Springer, (1995)], correlates these optical parameters with experimental data taken throughout the process window to predict printing failures.
This statistical method however leads to some false predictions. Although false predictions may be unavoidable in statistical methodologies, it is possible to lower their rate of occurrence. In this study, concentrated on contact layer patterning for the 90
nm node and the poly layer patterning for the 65
nm node, the accuracy of CFORC models is improved through several approaches: enhancing the normalization algorithm, optimization of fitting parameters and optimizing the parameter space coverage.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2006.01.034</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0850-7127</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9317 |
ispartof | Microelectronic engineering, 2006-04, Vol.83 (4), p.1017-1022 |
issn | 0167-9317 1873-5568 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00023226v1 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Electronics Exact sciences and technology Failure prediction Microelectronic fabrication (materials and surfaces technology) OPC ORC Process window Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices SVM Testing, measurement, noise and reliability |
title | Critical failure ORC: Improving model accuracy through enhanced model generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20failure%20ORC:%20Improving%20model%20accuracy%20through%20enhanced%20model%20generation&rft.jtitle=Microelectronic%20engineering&rft.au=Borjon,%20Amandine&rft.date=2006-04-01&rft.volume=83&rft.issue=4&rft.spage=1017&rft.epage=1022&rft.pages=1017-1022&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2006.01.034&rft_dat=%3Cproquest_hal_p%3E29163849%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29163849&rft_id=info:pmid/&rft_els_id=S016793170600044X&rfr_iscdi=true |