Random tilings of high symmetry: II. Boundary conditions and numerical studies

We perform numerical studies including Monte Carlo simulations of high rotational symmetry random tilings. For computational convenience, our tilings obey fixed boundary conditions in regular polygons. We obtain statistics on path counting and vertex coordination which compare well with predictions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2005-09, Vol.120 (5-6), p.837-873
Hauptverfasser: WIDOM, M, DESTAINVILLE, N, MOSSERI, R, BAILLY, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 873
container_issue 5-6
container_start_page 837
container_title Journal of statistical physics
container_volume 120
creator WIDOM, M
DESTAINVILLE, N
MOSSERI, R
BAILLY, F
description We perform numerical studies including Monte Carlo simulations of high rotational symmetry random tilings. For computational convenience, our tilings obey fixed boundary conditions in regular polygons. We obtain statistics on path counting and vertex coordination which compare well with predictions of mean-field theory and allow estimation of the configurational entropy, which tends to the value 0.568 per vertex in the limit of continuous symmetry. Tilings with phason strain appear to share the same entropy as unstrained tilings, as predicted by mean-field theory. We consider the thermodynamic limit and argue that the limiting fixed boundary entropy equals the limiting free boundary entropy, although these differ for finite rotational symmetry.
doi_str_mv 10.1007/s10955-005-6998-x
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00012895v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00012895v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-58823111f3f06bc9c3a69f9ee57e2f04d1d0ca69efc5c638c7ed4008158b66053</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsfwFsuHjykvpc0u4m3KmoLRUH0vKTZpI3sn7LZSvvtTVnR04NhfsObIeQaYYIA-V1E0FIyAMkyrRXbn5ARypwznaE4JSMAztk0R3lOLmL8AgCttByR13fTlG1N-1CFZh1p6-kmrDc0Hura9d3hni4WE_rQ7prSdAdq26YMfWibSBNHm13tumBNRWO_K4OLl-TMmyq6q987Jp_PTx-Pc7Z8e1k8zpbMCtA9k0pxgYheeMhWVlthMu21czJ33MO0xBJskpy30mZC2dyVUwCFUq2yDKQYk9shd2OqYtuFOj1XtCYU89myOGqpIPLU8BuTFwev7doYO-f_AITiOF4xjJcYWRzHK_aJuRmYrYmpnu9MY0P8B3MhFOcofgD-vW7J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Random tilings of high symmetry: II. Boundary conditions and numerical studies</title><source>SpringerLink Journals</source><creator>WIDOM, M ; DESTAINVILLE, N ; MOSSERI, R ; BAILLY, F</creator><creatorcontrib>WIDOM, M ; DESTAINVILLE, N ; MOSSERI, R ; BAILLY, F</creatorcontrib><description>We perform numerical studies including Monte Carlo simulations of high rotational symmetry random tilings. For computational convenience, our tilings obey fixed boundary conditions in regular polygons. We obtain statistics on path counting and vertex coordination which compare well with predictions of mean-field theory and allow estimation of the configurational entropy, which tends to the value 0.568 per vertex in the limit of continuous symmetry. Tilings with phason strain appear to share the same entropy as unstrained tilings, as predicted by mean-field theory. We consider the thermodynamic limit and argue that the limiting fixed boundary entropy equals the limiting free boundary entropy, although these differ for finite rotational symmetry.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-005-6998-x</identifier><identifier>CODEN: JSTPBS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Condensed Matter ; Exact sciences and technology ; Physics ; Statistical Mechanics ; Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><ispartof>Journal of statistical physics, 2005-09, Vol.120 (5-6), p.837-873</ispartof><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-58823111f3f06bc9c3a69f9ee57e2f04d1d0ca69efc5c638c7ed4008158b66053</citedby><cites>FETCH-LOGICAL-c309t-58823111f3f06bc9c3a69f9ee57e2f04d1d0ca69efc5c638c7ed4008158b66053</cites><orcidid>0000-0003-3867-5102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17338221$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00012895$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>WIDOM, M</creatorcontrib><creatorcontrib>DESTAINVILLE, N</creatorcontrib><creatorcontrib>MOSSERI, R</creatorcontrib><creatorcontrib>BAILLY, F</creatorcontrib><title>Random tilings of high symmetry: II. Boundary conditions and numerical studies</title><title>Journal of statistical physics</title><description>We perform numerical studies including Monte Carlo simulations of high rotational symmetry random tilings. For computational convenience, our tilings obey fixed boundary conditions in regular polygons. We obtain statistics on path counting and vertex coordination which compare well with predictions of mean-field theory and allow estimation of the configurational entropy, which tends to the value 0.568 per vertex in the limit of continuous symmetry. Tilings with phason strain appear to share the same entropy as unstrained tilings, as predicted by mean-field theory. We consider the thermodynamic limit and argue that the limiting fixed boundary entropy equals the limiting free boundary entropy, although these differ for finite rotational symmetry.</description><subject>Condensed Matter</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMoWKsfwFsuHjykvpc0u4m3KmoLRUH0vKTZpI3sn7LZSvvtTVnR04NhfsObIeQaYYIA-V1E0FIyAMkyrRXbn5ARypwznaE4JSMAztk0R3lOLmL8AgCttByR13fTlG1N-1CFZh1p6-kmrDc0Hura9d3hni4WE_rQ7prSdAdq26YMfWibSBNHm13tumBNRWO_K4OLl-TMmyq6q987Jp_PTx-Pc7Z8e1k8zpbMCtA9k0pxgYheeMhWVlthMu21czJ33MO0xBJskpy30mZC2dyVUwCFUq2yDKQYk9shd2OqYtuFOj1XtCYU89myOGqpIPLU8BuTFwev7doYO-f_AITiOF4xjJcYWRzHK_aJuRmYrYmpnu9MY0P8B3MhFOcofgD-vW7J</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>WIDOM, M</creator><creator>DESTAINVILLE, N</creator><creator>MOSSERI, R</creator><creator>BAILLY, F</creator><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3867-5102</orcidid></search><sort><creationdate>20050901</creationdate><title>Random tilings of high symmetry: II. Boundary conditions and numerical studies</title><author>WIDOM, M ; DESTAINVILLE, N ; MOSSERI, R ; BAILLY, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-58823111f3f06bc9c3a69f9ee57e2f04d1d0ca69efc5c638c7ed4008158b66053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Condensed Matter</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WIDOM, M</creatorcontrib><creatorcontrib>DESTAINVILLE, N</creatorcontrib><creatorcontrib>MOSSERI, R</creatorcontrib><creatorcontrib>BAILLY, F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WIDOM, M</au><au>DESTAINVILLE, N</au><au>MOSSERI, R</au><au>BAILLY, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random tilings of high symmetry: II. Boundary conditions and numerical studies</atitle><jtitle>Journal of statistical physics</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>120</volume><issue>5-6</issue><spage>837</spage><epage>873</epage><pages>837-873</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><coden>JSTPBS</coden><abstract>We perform numerical studies including Monte Carlo simulations of high rotational symmetry random tilings. For computational convenience, our tilings obey fixed boundary conditions in regular polygons. We obtain statistics on path counting and vertex coordination which compare well with predictions of mean-field theory and allow estimation of the configurational entropy, which tends to the value 0.568 per vertex in the limit of continuous symmetry. Tilings with phason strain appear to share the same entropy as unstrained tilings, as predicted by mean-field theory. We consider the thermodynamic limit and argue that the limiting fixed boundary entropy equals the limiting free boundary entropy, although these differ for finite rotational symmetry.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10955-005-6998-x</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0003-3867-5102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2005-09, Vol.120 (5-6), p.837-873
issn 0022-4715
1572-9613
language eng
recordid cdi_hal_primary_oai_HAL_hal_00012895v1
source SpringerLink Journals
subjects Condensed Matter
Exact sciences and technology
Physics
Statistical Mechanics
Statistical physics, thermodynamics, and nonlinear dynamical systems
title Random tilings of high symmetry: II. Boundary conditions and numerical studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20tilings%20of%20high%20symmetry:%20II.%20Boundary%20conditions%20and%20numerical%20studies&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=WIDOM,%20M&rft.date=2005-09-01&rft.volume=120&rft.issue=5-6&rft.spage=837&rft.epage=873&rft.pages=837-873&rft.issn=0022-4715&rft.eissn=1572-9613&rft.coden=JSTPBS&rft_id=info:doi/10.1007/s10955-005-6998-x&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00012895v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true