Survey propagation: An algorithm for satisfiability

We study the satisfiability of randomly generated formulas formed by M clauses of exactly K literals over N Boolean variables. For a given value of N the problem is known to be most difficult when α = M/N is close to the experimental threshold αc separating the region where almost all formulas are S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2005-09, Vol.27 (2), p.201-226
Hauptverfasser: Braunstein, A., Mézard, M., Zecchina, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 2
container_start_page 201
container_title Random structures & algorithms
container_volume 27
creator Braunstein, A.
Mézard, M.
Zecchina, R.
description We study the satisfiability of randomly generated formulas formed by M clauses of exactly K literals over N Boolean variables. For a given value of N the problem is known to be most difficult when α = M/N is close to the experimental threshold αc separating the region where almost all formulas are SAT from the region where all formulas are UNSAT. Recent results from a statistical physics analysis suggest that the difficulty is related to the existence of a clustering phenomenon of the solutions when α is close to (but smaller than) αc. We introduce a new type of message passing algorithm which allows to find efficiently a satisfying assignment of the variables in this difficult region. This algorithm is iterative and composed of two main parts. The first is a message‐passing procedure which generalizes the usual methods like Sum‐Product or Belief Propagation: It passes messages that may be thought of as surveys over clusters of the ordinary messages. The second part uses the detailed probabilistic information obtained from the surveys in order to fix variables and simplify the problem. Eventually, the simplified problem that remains is solved by a conventional heuristic. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005
doi_str_mv 10.1002/rsa.20057
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00008893v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>RSA20057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3767-38e5251b021930e488f23d8e00b96a3dd5d779916e33a2d6f0c57a73b233644f3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmNw4A165dDNidsm5VZNsCFVILEhuEXpmmyBbp2SMujb0zEYJ0627O-z5J-QSwoDCsCGzqsBA4j5EelRSEXIIiqOd33EwlQgOyVn3r8CAEeGPYLTd7fVbbBx9UYtVGPr9XWQrQNVLWpnm-UqMLULfLfwxqrCVrZpz8mJUZXXFz-1T55ub2ajSZg_jO9GWR7OkSc8RKFjFtMCGE0RdCSEYVgKDVCkicKyjEvO05QmGlGxMjEwj7niWDDEJIoM9snV_u5SVXLj7Eq5VtbKykmWy92s-wKESHFL_9i5q7132hwECnKXjOySkd_JdOxwz37YSrf_g_Jxmv0a4d6wvtGfB0O5N5lw5LF8vh9LjGb57csU5Ay_AFIJcf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Survey propagation: An algorithm for satisfiability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Braunstein, A. ; Mézard, M. ; Zecchina, R.</creator><creatorcontrib>Braunstein, A. ; Mézard, M. ; Zecchina, R.</creatorcontrib><description>We study the satisfiability of randomly generated formulas formed by M clauses of exactly K literals over N Boolean variables. For a given value of N the problem is known to be most difficult when α = M/N is close to the experimental threshold αc separating the region where almost all formulas are SAT from the region where all formulas are UNSAT. Recent results from a statistical physics analysis suggest that the difficulty is related to the existence of a clustering phenomenon of the solutions when α is close to (but smaller than) αc. We introduce a new type of message passing algorithm which allows to find efficiently a satisfying assignment of the variables in this difficult region. This algorithm is iterative and composed of two main parts. The first is a message‐passing procedure which generalizes the usual methods like Sum‐Product or Belief Propagation: It passes messages that may be thought of as surveys over clusters of the ordinary messages. The second part uses the detailed probabilistic information obtained from the surveys in order to fix variables and simplify the problem. Eventually, the simplified problem that remains is solved by a conventional heuristic. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20057</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Computational Complexity ; Computer Science ; Condensed Matter ; Physics ; Statistical Mechanics</subject><ispartof>Random structures &amp; algorithms, 2005-09, Vol.27 (2), p.201-226</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3767-38e5251b021930e488f23d8e00b96a3dd5d779916e33a2d6f0c57a73b233644f3</citedby><cites>FETCH-LOGICAL-c3767-38e5251b021930e488f23d8e00b96a3dd5d779916e33a2d6f0c57a73b233644f3</cites><orcidid>0000-0003-4591-3893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20057$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20057$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00008893$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Braunstein, A.</creatorcontrib><creatorcontrib>Mézard, M.</creatorcontrib><creatorcontrib>Zecchina, R.</creatorcontrib><title>Survey propagation: An algorithm for satisfiability</title><title>Random structures &amp; algorithms</title><addtitle>Random Struct. Alg</addtitle><description>We study the satisfiability of randomly generated formulas formed by M clauses of exactly K literals over N Boolean variables. For a given value of N the problem is known to be most difficult when α = M/N is close to the experimental threshold αc separating the region where almost all formulas are SAT from the region where all formulas are UNSAT. Recent results from a statistical physics analysis suggest that the difficulty is related to the existence of a clustering phenomenon of the solutions when α is close to (but smaller than) αc. We introduce a new type of message passing algorithm which allows to find efficiently a satisfying assignment of the variables in this difficult region. This algorithm is iterative and composed of two main parts. The first is a message‐passing procedure which generalizes the usual methods like Sum‐Product or Belief Propagation: It passes messages that may be thought of as surveys over clusters of the ordinary messages. The second part uses the detailed probabilistic information obtained from the surveys in order to fix variables and simplify the problem. Eventually, the simplified problem that remains is solved by a conventional heuristic. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005</description><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>Condensed Matter</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMhiMEEmNw4A165dDNidsm5VZNsCFVILEhuEXpmmyBbp2SMujb0zEYJ0627O-z5J-QSwoDCsCGzqsBA4j5EelRSEXIIiqOd33EwlQgOyVn3r8CAEeGPYLTd7fVbbBx9UYtVGPr9XWQrQNVLWpnm-UqMLULfLfwxqrCVrZpz8mJUZXXFz-1T55ub2ajSZg_jO9GWR7OkSc8RKFjFtMCGE0RdCSEYVgKDVCkicKyjEvO05QmGlGxMjEwj7niWDDEJIoM9snV_u5SVXLj7Eq5VtbKykmWy92s-wKESHFL_9i5q7132hwECnKXjOySkd_JdOxwz37YSrf_g_Jxmv0a4d6wvtGfB0O5N5lw5LF8vh9LjGb57csU5Ay_AFIJcf8</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Braunstein, A.</creator><creator>Mézard, M.</creator><creator>Zecchina, R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4591-3893</orcidid></search><sort><creationdate>200509</creationdate><title>Survey propagation: An algorithm for satisfiability</title><author>Braunstein, A. ; Mézard, M. ; Zecchina, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3767-38e5251b021930e488f23d8e00b96a3dd5d779916e33a2d6f0c57a73b233644f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>Condensed Matter</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braunstein, A.</creatorcontrib><creatorcontrib>Mézard, M.</creatorcontrib><creatorcontrib>Zecchina, R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braunstein, A.</au><au>Mézard, M.</au><au>Zecchina, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey propagation: An algorithm for satisfiability</atitle><jtitle>Random structures &amp; algorithms</jtitle><addtitle>Random Struct. Alg</addtitle><date>2005-09</date><risdate>2005</risdate><volume>27</volume><issue>2</issue><spage>201</spage><epage>226</epage><pages>201-226</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We study the satisfiability of randomly generated formulas formed by M clauses of exactly K literals over N Boolean variables. For a given value of N the problem is known to be most difficult when α = M/N is close to the experimental threshold αc separating the region where almost all formulas are SAT from the region where all formulas are UNSAT. Recent results from a statistical physics analysis suggest that the difficulty is related to the existence of a clustering phenomenon of the solutions when α is close to (but smaller than) αc. We introduce a new type of message passing algorithm which allows to find efficiently a satisfying assignment of the variables in this difficult region. This algorithm is iterative and composed of two main parts. The first is a message‐passing procedure which generalizes the usual methods like Sum‐Product or Belief Propagation: It passes messages that may be thought of as surveys over clusters of the ordinary messages. The second part uses the detailed probabilistic information obtained from the surveys in order to fix variables and simplify the problem. Eventually, the simplified problem that remains is solved by a conventional heuristic. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/rsa.20057</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-4591-3893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2005-09, Vol.27 (2), p.201-226
issn 1042-9832
1098-2418
language eng
recordid cdi_hal_primary_oai_HAL_hal_00008893v1
source Wiley Online Library Journals Frontfile Complete
subjects Computational Complexity
Computer Science
Condensed Matter
Physics
Statistical Mechanics
title Survey propagation: An algorithm for satisfiability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20propagation:%20An%20algorithm%20for%20satisfiability&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Braunstein,%20A.&rft.date=2005-09&rft.volume=27&rft.issue=2&rft.spage=201&rft.epage=226&rft.pages=201-226&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20057&rft_dat=%3Cwiley_hal_p%3ERSA20057%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true