Survey propagation: An algorithm for satisfiability
We study the satisfiability of randomly generated formulas formed by M clauses of exactly K literals over N Boolean variables. For a given value of N the problem is known to be most difficult when α = M/N is close to the experimental threshold αc separating the region where almost all formulas are S...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2005-09, Vol.27 (2), p.201-226 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | 2 |
container_start_page | 201 |
container_title | Random structures & algorithms |
container_volume | 27 |
creator | Braunstein, A. Mézard, M. Zecchina, R. |
description | We study the satisfiability of randomly generated formulas formed by M clauses of exactly K literals over N Boolean variables. For a given value of N the problem is known to be most difficult when α = M/N is close to the experimental threshold αc separating the region where almost all formulas are SAT from the region where all formulas are UNSAT. Recent results from a statistical physics analysis suggest that the difficulty is related to the existence of a clustering phenomenon of the solutions when α is close to (but smaller than) αc. We introduce a new type of message passing algorithm which allows to find efficiently a satisfying assignment of the variables in this difficult region. This algorithm is iterative and composed of two main parts. The first is a message‐passing procedure which generalizes the usual methods like Sum‐Product or Belief Propagation: It passes messages that may be thought of as surveys over clusters of the ordinary messages. The second part uses the detailed probabilistic information obtained from the surveys in order to fix variables and simplify the problem. Eventually, the simplified problem that remains is solved by a conventional heuristic. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005 |
doi_str_mv | 10.1002/rsa.20057 |
format | Article |
fullrecord | <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00008893v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>RSA20057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3767-38e5251b021930e488f23d8e00b96a3dd5d779916e33a2d6f0c57a73b233644f3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmNw4A165dDNidsm5VZNsCFVILEhuEXpmmyBbp2SMujb0zEYJ0627O-z5J-QSwoDCsCGzqsBA4j5EelRSEXIIiqOd33EwlQgOyVn3r8CAEeGPYLTd7fVbbBx9UYtVGPr9XWQrQNVLWpnm-UqMLULfLfwxqrCVrZpz8mJUZXXFz-1T55ub2ajSZg_jO9GWR7OkSc8RKFjFtMCGE0RdCSEYVgKDVCkicKyjEvO05QmGlGxMjEwj7niWDDEJIoM9snV_u5SVXLj7Eq5VtbKykmWy92s-wKESHFL_9i5q7132hwECnKXjOySkd_JdOxwz37YSrf_g_Jxmv0a4d6wvtGfB0O5N5lw5LF8vh9LjGb57csU5Ay_AFIJcf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Survey propagation: An algorithm for satisfiability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Braunstein, A. ; Mézard, M. ; Zecchina, R.</creator><creatorcontrib>Braunstein, A. ; Mézard, M. ; Zecchina, R.</creatorcontrib><description>We study the satisfiability of randomly generated formulas formed by M clauses of exactly K literals over N Boolean variables. For a given value of N the problem is known to be most difficult when α = M/N is close to the experimental threshold αc separating the region where almost all formulas are SAT from the region where all formulas are UNSAT. Recent results from a statistical physics analysis suggest that the difficulty is related to the existence of a clustering phenomenon of the solutions when α is close to (but smaller than) αc. We introduce a new type of message passing algorithm which allows to find efficiently a satisfying assignment of the variables in this difficult region. This algorithm is iterative and composed of two main parts. The first is a message‐passing procedure which generalizes the usual methods like Sum‐Product or Belief Propagation: It passes messages that may be thought of as surveys over clusters of the ordinary messages. The second part uses the detailed probabilistic information obtained from the surveys in order to fix variables and simplify the problem. Eventually, the simplified problem that remains is solved by a conventional heuristic. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20057</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Computational Complexity ; Computer Science ; Condensed Matter ; Physics ; Statistical Mechanics</subject><ispartof>Random structures & algorithms, 2005-09, Vol.27 (2), p.201-226</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3767-38e5251b021930e488f23d8e00b96a3dd5d779916e33a2d6f0c57a73b233644f3</citedby><cites>FETCH-LOGICAL-c3767-38e5251b021930e488f23d8e00b96a3dd5d779916e33a2d6f0c57a73b233644f3</cites><orcidid>0000-0003-4591-3893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20057$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20057$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00008893$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Braunstein, A.</creatorcontrib><creatorcontrib>Mézard, M.</creatorcontrib><creatorcontrib>Zecchina, R.</creatorcontrib><title>Survey propagation: An algorithm for satisfiability</title><title>Random structures & algorithms</title><addtitle>Random Struct. Alg</addtitle><description>We study the satisfiability of randomly generated formulas formed by M clauses of exactly K literals over N Boolean variables. For a given value of N the problem is known to be most difficult when α = M/N is close to the experimental threshold αc separating the region where almost all formulas are SAT from the region where all formulas are UNSAT. Recent results from a statistical physics analysis suggest that the difficulty is related to the existence of a clustering phenomenon of the solutions when α is close to (but smaller than) αc. We introduce a new type of message passing algorithm which allows to find efficiently a satisfying assignment of the variables in this difficult region. This algorithm is iterative and composed of two main parts. The first is a message‐passing procedure which generalizes the usual methods like Sum‐Product or Belief Propagation: It passes messages that may be thought of as surveys over clusters of the ordinary messages. The second part uses the detailed probabilistic information obtained from the surveys in order to fix variables and simplify the problem. Eventually, the simplified problem that remains is solved by a conventional heuristic. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005</description><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>Condensed Matter</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMhiMEEmNw4A165dDNidsm5VZNsCFVILEhuEXpmmyBbp2SMujb0zEYJ0627O-z5J-QSwoDCsCGzqsBA4j5EelRSEXIIiqOd33EwlQgOyVn3r8CAEeGPYLTd7fVbbBx9UYtVGPr9XWQrQNVLWpnm-UqMLULfLfwxqrCVrZpz8mJUZXXFz-1T55ub2ajSZg_jO9GWR7OkSc8RKFjFtMCGE0RdCSEYVgKDVCkicKyjEvO05QmGlGxMjEwj7niWDDEJIoM9snV_u5SVXLj7Eq5VtbKykmWy92s-wKESHFL_9i5q7132hwECnKXjOySkd_JdOxwz37YSrf_g_Jxmv0a4d6wvtGfB0O5N5lw5LF8vh9LjGb57csU5Ay_AFIJcf8</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Braunstein, A.</creator><creator>Mézard, M.</creator><creator>Zecchina, R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4591-3893</orcidid></search><sort><creationdate>200509</creationdate><title>Survey propagation: An algorithm for satisfiability</title><author>Braunstein, A. ; Mézard, M. ; Zecchina, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3767-38e5251b021930e488f23d8e00b96a3dd5d779916e33a2d6f0c57a73b233644f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>Condensed Matter</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braunstein, A.</creatorcontrib><creatorcontrib>Mézard, M.</creatorcontrib><creatorcontrib>Zecchina, R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braunstein, A.</au><au>Mézard, M.</au><au>Zecchina, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey propagation: An algorithm for satisfiability</atitle><jtitle>Random structures & algorithms</jtitle><addtitle>Random Struct. Alg</addtitle><date>2005-09</date><risdate>2005</risdate><volume>27</volume><issue>2</issue><spage>201</spage><epage>226</epage><pages>201-226</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We study the satisfiability of randomly generated formulas formed by M clauses of exactly K literals over N Boolean variables. For a given value of N the problem is known to be most difficult when α = M/N is close to the experimental threshold αc separating the region where almost all formulas are SAT from the region where all formulas are UNSAT. Recent results from a statistical physics analysis suggest that the difficulty is related to the existence of a clustering phenomenon of the solutions when α is close to (but smaller than) αc. We introduce a new type of message passing algorithm which allows to find efficiently a satisfying assignment of the variables in this difficult region. This algorithm is iterative and composed of two main parts. The first is a message‐passing procedure which generalizes the usual methods like Sum‐Product or Belief Propagation: It passes messages that may be thought of as surveys over clusters of the ordinary messages. The second part uses the detailed probabilistic information obtained from the surveys in order to fix variables and simplify the problem. Eventually, the simplified problem that remains is solved by a conventional heuristic. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/rsa.20057</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-4591-3893</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2005-09, Vol.27 (2), p.201-226 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00008893v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Computational Complexity Computer Science Condensed Matter Physics Statistical Mechanics |
title | Survey propagation: An algorithm for satisfiability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20propagation:%20An%20algorithm%20for%20satisfiability&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Braunstein,%20A.&rft.date=2005-09&rft.volume=27&rft.issue=2&rft.spage=201&rft.epage=226&rft.pages=201-226&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20057&rft_dat=%3Cwiley_hal_p%3ERSA20057%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |