Coloring Artemis graphs

We consider the class of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We give an algorithm that can optimally color the vertices of these graphs in time O ( n 2 m ) .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2009-05, Vol.410 (21), p.2234-2240
Hauptverfasser: Lévêque, Benjamin, Maffray, Frédéric, Reed, Bruce, Trotignon, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2240
container_issue 21
container_start_page 2234
container_title Theoretical computer science
container_volume 410
creator Lévêque, Benjamin
Maffray, Frédéric
Reed, Bruce
Trotignon, Nicolas
description We consider the class of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We give an algorithm that can optimally color the vertices of these graphs in time O ( n 2 m ) .
doi_str_mv 10.1016/j.tcs.2009.02.012
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00004741v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397509001649</els_id><sourcerecordid>34404994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-9c45e5a0f86aa250b15f1c27ff4865e30ac6cf8344aa60e47ca9a7a6b6ac219f3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQRoMoWKtn8daLioddJ9lsssFTKWqFghc9h2matCnbbk3Wgv_eLFt67BwyEN7MfDxC7ijkFKh4XuetiTkDUDmwHCg7IwNaSZUxpvg5GUABPCuULC_JVYxrSFVKMSC3k6Zugt8uR-PQ2o2Po2XA3SpekwuHdbQ3hz4k32-vX5NpNvt8_5iMZ5nhQraZMry0JYKrBCIrYU5LRw2TzvFKlLYANMK4quAcUYDl0qBCiWIu0DCqXDEkT_3eFdZ6F_wGw59u0OvpeKa7vy4pl5zuaWIfe3YXmp9fG1ud8hpb17i1zW_UCgrBZHoS-XCSTHmAK8UTSHvQhCbGYN0xAwXdidVrncTqTqwGppPYNHN_WI7RYO0Cbo2Px0FGeakAisS99JxN_vbeBh2Nt1tjFz5Y0-pF409c-QfQ0oqL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34404994</pqid></control><display><type>article</type><title>Coloring Artemis graphs</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lévêque, Benjamin ; Maffray, Frédéric ; Reed, Bruce ; Trotignon, Nicolas</creator><creatorcontrib>Lévêque, Benjamin ; Maffray, Frédéric ; Reed, Bruce ; Trotignon, Nicolas</creatorcontrib><description>We consider the class of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We give an algorithm that can optimally color the vertices of these graphs in time O ( n 2 m ) .</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2009.02.012</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Algorithm ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Coloring ; Combinatorics ; Combinatorics. Ordered structures ; Computer Science ; Computer science; control theory; systems ; Discrete Mathematics ; Even pair ; Exact sciences and technology ; Graph ; Graph theory ; Information retrieval. Graph ; Mathematics ; Miscellaneous ; Perfect graph ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2009-05, Vol.410 (21), p.2234-2240</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-9c45e5a0f86aa250b15f1c27ff4865e30ac6cf8344aa60e47ca9a7a6b6ac219f3</citedby><cites>FETCH-LOGICAL-c467t-9c45e5a0f86aa250b15f1c27ff4865e30ac6cf8344aa60e47ca9a7a6b6ac219f3</cites><orcidid>0000-0003-1978-0687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2009.02.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21459003$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00004741$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lévêque, Benjamin</creatorcontrib><creatorcontrib>Maffray, Frédéric</creatorcontrib><creatorcontrib>Reed, Bruce</creatorcontrib><creatorcontrib>Trotignon, Nicolas</creatorcontrib><title>Coloring Artemis graphs</title><title>Theoretical computer science</title><description>We consider the class of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We give an algorithm that can optimally color the vertices of these graphs in time O ( n 2 m ) .</description><subject>Algorithm</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Coloring</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Discrete Mathematics</subject><subject>Even pair</subject><subject>Exact sciences and technology</subject><subject>Graph</subject><subject>Graph theory</subject><subject>Information retrieval. Graph</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Perfect graph</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQRoMoWKtn8daLioddJ9lsssFTKWqFghc9h2matCnbbk3Wgv_eLFt67BwyEN7MfDxC7ijkFKh4XuetiTkDUDmwHCg7IwNaSZUxpvg5GUABPCuULC_JVYxrSFVKMSC3k6Zugt8uR-PQ2o2Po2XA3SpekwuHdbQ3hz4k32-vX5NpNvt8_5iMZ5nhQraZMry0JYKrBCIrYU5LRw2TzvFKlLYANMK4quAcUYDl0qBCiWIu0DCqXDEkT_3eFdZ6F_wGw59u0OvpeKa7vy4pl5zuaWIfe3YXmp9fG1ud8hpb17i1zW_UCgrBZHoS-XCSTHmAK8UTSHvQhCbGYN0xAwXdidVrncTqTqwGppPYNHN_WI7RYO0Cbo2Px0FGeakAisS99JxN_vbeBh2Nt1tjFz5Y0-pF409c-QfQ0oqL</recordid><startdate>20090517</startdate><enddate>20090517</enddate><creator>Lévêque, Benjamin</creator><creator>Maffray, Frédéric</creator><creator>Reed, Bruce</creator><creator>Trotignon, Nicolas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1978-0687</orcidid></search><sort><creationdate>20090517</creationdate><title>Coloring Artemis graphs</title><author>Lévêque, Benjamin ; Maffray, Frédéric ; Reed, Bruce ; Trotignon, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-9c45e5a0f86aa250b15f1c27ff4865e30ac6cf8344aa60e47ca9a7a6b6ac219f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Coloring</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Discrete Mathematics</topic><topic>Even pair</topic><topic>Exact sciences and technology</topic><topic>Graph</topic><topic>Graph theory</topic><topic>Information retrieval. Graph</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Perfect graph</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lévêque, Benjamin</creatorcontrib><creatorcontrib>Maffray, Frédéric</creatorcontrib><creatorcontrib>Reed, Bruce</creatorcontrib><creatorcontrib>Trotignon, Nicolas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lévêque, Benjamin</au><au>Maffray, Frédéric</au><au>Reed, Bruce</au><au>Trotignon, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coloring Artemis graphs</atitle><jtitle>Theoretical computer science</jtitle><date>2009-05-17</date><risdate>2009</risdate><volume>410</volume><issue>21</issue><spage>2234</spage><epage>2240</epage><pages>2234-2240</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>We consider the class of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We give an algorithm that can optimally color the vertices of these graphs in time O ( n 2 m ) .</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2009.02.012</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1978-0687</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2009-05, Vol.410 (21), p.2234-2240
issn 0304-3975
1879-2294
language eng
recordid cdi_hal_primary_oai_HAL_hal_00004741v1
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithm
Algorithmics. Computability. Computer arithmetics
Applied sciences
Coloring
Combinatorics
Combinatorics. Ordered structures
Computer Science
Computer science
control theory
systems
Discrete Mathematics
Even pair
Exact sciences and technology
Graph
Graph theory
Information retrieval. Graph
Mathematics
Miscellaneous
Perfect graph
Sciences and techniques of general use
Theoretical computing
title Coloring Artemis graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coloring%20Artemis%20graphs&rft.jtitle=Theoretical%20computer%20science&rft.au=L%C3%A9v%C3%AAque,%20Benjamin&rft.date=2009-05-17&rft.volume=410&rft.issue=21&rft.spage=2234&rft.epage=2240&rft.pages=2234-2240&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2009.02.012&rft_dat=%3Cproquest_hal_p%3E34404994%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34404994&rft_id=info:pmid/&rft_els_id=S0304397509001649&rfr_iscdi=true