Coloring Artemis graphs
We consider the class of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We give an algorithm that can optimally color the vertices of these graphs in time O ( n 2 m ) .
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2009-05, Vol.410 (21), p.2234-2240 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2240 |
---|---|
container_issue | 21 |
container_start_page | 2234 |
container_title | Theoretical computer science |
container_volume | 410 |
creator | Lévêque, Benjamin Maffray, Frédéric Reed, Bruce Trotignon, Nicolas |
description | We consider the class of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We give an algorithm that can optimally color the vertices of these graphs in time
O
(
n
2
m
)
. |
doi_str_mv | 10.1016/j.tcs.2009.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00004741v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397509001649</els_id><sourcerecordid>34404994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-9c45e5a0f86aa250b15f1c27ff4865e30ac6cf8344aa60e47ca9a7a6b6ac219f3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQRoMoWKtn8daLioddJ9lsssFTKWqFghc9h2matCnbbk3Wgv_eLFt67BwyEN7MfDxC7ijkFKh4XuetiTkDUDmwHCg7IwNaSZUxpvg5GUABPCuULC_JVYxrSFVKMSC3k6Zugt8uR-PQ2o2Po2XA3SpekwuHdbQ3hz4k32-vX5NpNvt8_5iMZ5nhQraZMry0JYKrBCIrYU5LRw2TzvFKlLYANMK4quAcUYDl0qBCiWIu0DCqXDEkT_3eFdZ6F_wGw59u0OvpeKa7vy4pl5zuaWIfe3YXmp9fG1ud8hpb17i1zW_UCgrBZHoS-XCSTHmAK8UTSHvQhCbGYN0xAwXdidVrncTqTqwGppPYNHN_WI7RYO0Cbo2Px0FGeakAisS99JxN_vbeBh2Nt1tjFz5Y0-pF409c-QfQ0oqL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34404994</pqid></control><display><type>article</type><title>Coloring Artemis graphs</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lévêque, Benjamin ; Maffray, Frédéric ; Reed, Bruce ; Trotignon, Nicolas</creator><creatorcontrib>Lévêque, Benjamin ; Maffray, Frédéric ; Reed, Bruce ; Trotignon, Nicolas</creatorcontrib><description>We consider the class of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We give an algorithm that can optimally color the vertices of these graphs in time
O
(
n
2
m
)
.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2009.02.012</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Algorithm ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Coloring ; Combinatorics ; Combinatorics. Ordered structures ; Computer Science ; Computer science; control theory; systems ; Discrete Mathematics ; Even pair ; Exact sciences and technology ; Graph ; Graph theory ; Information retrieval. Graph ; Mathematics ; Miscellaneous ; Perfect graph ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2009-05, Vol.410 (21), p.2234-2240</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-9c45e5a0f86aa250b15f1c27ff4865e30ac6cf8344aa60e47ca9a7a6b6ac219f3</citedby><cites>FETCH-LOGICAL-c467t-9c45e5a0f86aa250b15f1c27ff4865e30ac6cf8344aa60e47ca9a7a6b6ac219f3</cites><orcidid>0000-0003-1978-0687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2009.02.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21459003$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00004741$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lévêque, Benjamin</creatorcontrib><creatorcontrib>Maffray, Frédéric</creatorcontrib><creatorcontrib>Reed, Bruce</creatorcontrib><creatorcontrib>Trotignon, Nicolas</creatorcontrib><title>Coloring Artemis graphs</title><title>Theoretical computer science</title><description>We consider the class of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We give an algorithm that can optimally color the vertices of these graphs in time
O
(
n
2
m
)
.</description><subject>Algorithm</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Coloring</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Discrete Mathematics</subject><subject>Even pair</subject><subject>Exact sciences and technology</subject><subject>Graph</subject><subject>Graph theory</subject><subject>Information retrieval. Graph</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Perfect graph</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQRoMoWKtn8daLioddJ9lsssFTKWqFghc9h2matCnbbk3Wgv_eLFt67BwyEN7MfDxC7ijkFKh4XuetiTkDUDmwHCg7IwNaSZUxpvg5GUABPCuULC_JVYxrSFVKMSC3k6Zugt8uR-PQ2o2Po2XA3SpekwuHdbQ3hz4k32-vX5NpNvt8_5iMZ5nhQraZMry0JYKrBCIrYU5LRw2TzvFKlLYANMK4quAcUYDl0qBCiWIu0DCqXDEkT_3eFdZ6F_wGw59u0OvpeKa7vy4pl5zuaWIfe3YXmp9fG1ud8hpb17i1zW_UCgrBZHoS-XCSTHmAK8UTSHvQhCbGYN0xAwXdidVrncTqTqwGppPYNHN_WI7RYO0Cbo2Px0FGeakAisS99JxN_vbeBh2Nt1tjFz5Y0-pF409c-QfQ0oqL</recordid><startdate>20090517</startdate><enddate>20090517</enddate><creator>Lévêque, Benjamin</creator><creator>Maffray, Frédéric</creator><creator>Reed, Bruce</creator><creator>Trotignon, Nicolas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1978-0687</orcidid></search><sort><creationdate>20090517</creationdate><title>Coloring Artemis graphs</title><author>Lévêque, Benjamin ; Maffray, Frédéric ; Reed, Bruce ; Trotignon, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-9c45e5a0f86aa250b15f1c27ff4865e30ac6cf8344aa60e47ca9a7a6b6ac219f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Coloring</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Discrete Mathematics</topic><topic>Even pair</topic><topic>Exact sciences and technology</topic><topic>Graph</topic><topic>Graph theory</topic><topic>Information retrieval. Graph</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Perfect graph</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lévêque, Benjamin</creatorcontrib><creatorcontrib>Maffray, Frédéric</creatorcontrib><creatorcontrib>Reed, Bruce</creatorcontrib><creatorcontrib>Trotignon, Nicolas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lévêque, Benjamin</au><au>Maffray, Frédéric</au><au>Reed, Bruce</au><au>Trotignon, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coloring Artemis graphs</atitle><jtitle>Theoretical computer science</jtitle><date>2009-05-17</date><risdate>2009</risdate><volume>410</volume><issue>21</issue><spage>2234</spage><epage>2240</epage><pages>2234-2240</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>We consider the class of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We give an algorithm that can optimally color the vertices of these graphs in time
O
(
n
2
m
)
.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2009.02.012</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1978-0687</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2009-05, Vol.410 (21), p.2234-2240 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00004741v1 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithm Algorithmics. Computability. Computer arithmetics Applied sciences Coloring Combinatorics Combinatorics. Ordered structures Computer Science Computer science control theory systems Discrete Mathematics Even pair Exact sciences and technology Graph Graph theory Information retrieval. Graph Mathematics Miscellaneous Perfect graph Sciences and techniques of general use Theoretical computing |
title | Coloring Artemis graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coloring%20Artemis%20graphs&rft.jtitle=Theoretical%20computer%20science&rft.au=L%C3%A9v%C3%AAque,%20Benjamin&rft.date=2009-05-17&rft.volume=410&rft.issue=21&rft.spage=2234&rft.epage=2240&rft.pages=2234-2240&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2009.02.012&rft_dat=%3Cproquest_hal_p%3E34404994%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34404994&rft_id=info:pmid/&rft_els_id=S0304397509001649&rfr_iscdi=true |