Alternative determinism principle for topological analysis of chaos

The topological analysis of chaos based on a knot-theoretic characterization of unstable periodic orbits has proven to be a powerful method, however knot theory can only be applied to three-dimensional systems. Still, the core principles upon which this approach is built--determinism and continuity-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 2), p.035202-035202, Article 035202
1. Verfasser: Lefranc, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 035202
container_issue 3 Pt 2
container_start_page 035202
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 74
creator Lefranc, Marc
description The topological analysis of chaos based on a knot-theoretic characterization of unstable periodic orbits has proven to be a powerful method, however knot theory can only be applied to three-dimensional systems. Still, the core principles upon which this approach is built--determinism and continuity--apply in any dimension. We propose an alternative framework in which these principles are enforced on triangulated surfaces rather than curves, and we show that in dimension 3 our approach numerically predicts the correct topological entropies for periodic orbits of the horseshoe map.
doi_str_mv 10.1103/PhysRevE.74.035202
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00004359v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68940773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9e0e2cc19d6f4e18475cc79cae6015d4805c1ce7cf046ed102e9d26df00055ef3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMotlb_gAfZk-Bh6-Rr0xxLqVYoKKLnELOzNpLd1M220H_vllY9zTA878vwEHJNYUwp8PuX1S694nY-VmIMXDJgJ2RIpYSccVWc7neuc66kHJCLlL4AOOMTcU4GVAGThaZDMpuGDtvGdn6LWYn9XvvGpzpbt75xfh0wq2KbdXEdQ_z0zobMNjbskk9ZrDK3sjFdkrPKhoRXxzki7w_zt9kiXz4_Ps2my9xxpbtcIyBzjuqyqATSiVDSOaWdxQKoLMUEpKMOlatAFFhSYKhLVpQVAEiJFR-Ru0PvygbT_1fbdmei9WYxXZr9rQdBcKm3vGdvD-y6jd8bTJ2pfXIYgm0wbpIpJlqAUnuQHUDXxpRarP6aKZi9ZvOr2ShhDpr70M2xffNRY_kfOXrlP4QaemA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68940773</pqid></control><display><type>article</type><title>Alternative determinism principle for topological analysis of chaos</title><source>American Physical Society Journals</source><creator>Lefranc, Marc</creator><creatorcontrib>Lefranc, Marc</creatorcontrib><description>The topological analysis of chaos based on a knot-theoretic characterization of unstable periodic orbits has proven to be a powerful method, however knot theory can only be applied to three-dimensional systems. Still, the core principles upon which this approach is built--determinism and continuity--apply in any dimension. We propose an alternative framework in which these principles are enforced on triangulated surfaces rather than curves, and we show that in dimension 3 our approach numerically predicts the correct topological entropies for periodic orbits of the horseshoe map.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.74.035202</identifier><identifier>PMID: 17025691</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Chaotic Dynamics ; Nonlinear Sciences</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 2), p.035202-035202, Article 035202</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9e0e2cc19d6f4e18475cc79cae6015d4805c1ce7cf046ed102e9d26df00055ef3</citedby><cites>FETCH-LOGICAL-c379t-9e0e2cc19d6f4e18475cc79cae6015d4805c1ce7cf046ed102e9d26df00055ef3</cites><orcidid>0000-0003-2563-7967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17025691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00004359$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefranc, Marc</creatorcontrib><title>Alternative determinism principle for topological analysis of chaos</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The topological analysis of chaos based on a knot-theoretic characterization of unstable periodic orbits has proven to be a powerful method, however knot theory can only be applied to three-dimensional systems. Still, the core principles upon which this approach is built--determinism and continuity--apply in any dimension. We propose an alternative framework in which these principles are enforced on triangulated surfaces rather than curves, and we show that in dimension 3 our approach numerically predicts the correct topological entropies for periodic orbits of the horseshoe map.</description><subject>Chaotic Dynamics</subject><subject>Nonlinear Sciences</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMotlb_gAfZk-Bh6-Rr0xxLqVYoKKLnELOzNpLd1M220H_vllY9zTA878vwEHJNYUwp8PuX1S694nY-VmIMXDJgJ2RIpYSccVWc7neuc66kHJCLlL4AOOMTcU4GVAGThaZDMpuGDtvGdn6LWYn9XvvGpzpbt75xfh0wq2KbdXEdQ_z0zobMNjbskk9ZrDK3sjFdkrPKhoRXxzki7w_zt9kiXz4_Ps2my9xxpbtcIyBzjuqyqATSiVDSOaWdxQKoLMUEpKMOlatAFFhSYKhLVpQVAEiJFR-Ru0PvygbT_1fbdmei9WYxXZr9rQdBcKm3vGdvD-y6jd8bTJ2pfXIYgm0wbpIpJlqAUnuQHUDXxpRarP6aKZi9ZvOr2ShhDpr70M2xffNRY_kfOXrlP4QaemA</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Lefranc, Marc</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2563-7967</orcidid></search><sort><creationdate>20060901</creationdate><title>Alternative determinism principle for topological analysis of chaos</title><author>Lefranc, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9e0e2cc19d6f4e18475cc79cae6015d4805c1ce7cf046ed102e9d26df00055ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chaotic Dynamics</topic><topic>Nonlinear Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefranc, Marc</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefranc, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative determinism principle for topological analysis of chaos</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2006-09-01</date><risdate>2006</risdate><volume>74</volume><issue>3 Pt 2</issue><spage>035202</spage><epage>035202</epage><pages>035202-035202</pages><artnum>035202</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The topological analysis of chaos based on a knot-theoretic characterization of unstable periodic orbits has proven to be a powerful method, however knot theory can only be applied to three-dimensional systems. Still, the core principles upon which this approach is built--determinism and continuity--apply in any dimension. We propose an alternative framework in which these principles are enforced on triangulated surfaces rather than curves, and we show that in dimension 3 our approach numerically predicts the correct topological entropies for periodic orbits of the horseshoe map.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>17025691</pmid><doi>10.1103/PhysRevE.74.035202</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2563-7967</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 2), p.035202-035202, Article 035202
issn 1539-3755
1550-2376
language eng
recordid cdi_hal_primary_oai_HAL_hal_00004359v3
source American Physical Society Journals
subjects Chaotic Dynamics
Nonlinear Sciences
title Alternative determinism principle for topological analysis of chaos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20determinism%20principle%20for%20topological%20analysis%20of%20chaos&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Lefranc,%20Marc&rft.date=2006-09-01&rft.volume=74&rft.issue=3%20Pt%202&rft.spage=035202&rft.epage=035202&rft.pages=035202-035202&rft.artnum=035202&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.74.035202&rft_dat=%3Cproquest_hal_p%3E68940773%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68940773&rft_id=info:pmid/17025691&rfr_iscdi=true