Minimal multicut and maximal integer multiflow: A survey

We present a survey about the maximum integral multiflow and minimum multicut problems and their subproblems, such as the multiterminal cut and the unsplittable flow problems. We consider neither continuous multiflow nor minimum cost multiflow. Most of the results are very recent and some are new. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2005-04, Vol.162 (1), p.55-69
Hauptverfasser: Costa, Marie-Christine, Létocart, Lucas, Roupin, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 55
container_title European journal of operational research
container_volume 162
creator Costa, Marie-Christine
Létocart, Lucas
Roupin, Frédéric
description We present a survey about the maximum integral multiflow and minimum multicut problems and their subproblems, such as the multiterminal cut and the unsplittable flow problems. We consider neither continuous multiflow nor minimum cost multiflow. Most of the results are very recent and some are new. We recall the dual relationship between both problems, give complexity results and algorithms, firstly in unrestricted graphs and secondly in several special graphs: trees, bipartite or planar graphs. A table summarizes the most important results.
doi_str_mv 10.1016/j.ejor.2003.10.037
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00003243v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221703008348</els_id><sourcerecordid>730586411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-b37d759775c44fff7aa3ac782cac4e610be69a835ca3fa4f23a523952ec18d943</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPBVvHlrz0TSteFkWv2DFi55DTF81pduuSbu6_95XK3s0MHkwmRlehpBzRhNGWXZVJ1B3PuGUCiQSKtQBmbFc8TjLM3pIZsiomHOmjslJCDWllEkmZyR_cq1bmyZaD03v7NBHpi2jtfn-JV3bwzv46bFquq_raBGFwW9hd0qOKtMEOPubc_J6d_uyfIhXz_ePy8Uqtqkq-vhNqFLJQilp07SqKmWMMFbl3BqbQsboG2SFyYW0RlQmrbgwkotCcrAsL4tUzMnllPthGr3xuJbf6c44_bBY6ZHDr1DBU7HlqL2YtBvffQ4Qel13g29xPc1pyoQomEQRn0TWdyF4qPapjOqxTF3rsUw9ljlyWB2aHieThw3YvQPwoBSC3mphWMbx3iHQKnG4kURsEFLqrNAf_RqzbqYswNq2DrwO1kFroXQebK_Lzv23yg_fapTi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204133915</pqid></control><display><type>article</type><title>Minimal multicut and maximal integer multiflow: A survey</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Costa, Marie-Christine ; Létocart, Lucas ; Roupin, Frédéric</creator><creatorcontrib>Costa, Marie-Christine ; Létocart, Lucas ; Roupin, Frédéric</creatorcontrib><description>We present a survey about the maximum integral multiflow and minimum multicut problems and their subproblems, such as the multiterminal cut and the unsplittable flow problems. We consider neither continuous multiflow nor minimum cost multiflow. Most of the results are very recent and some are new. We recall the dual relationship between both problems, give complexity results and algorithms, firstly in unrestricted graphs and secondly in several special graphs: trees, bipartite or planar graphs. A table summarizes the most important results.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2003.10.037</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Approximation ; Complexity ; Computer Science ; Discrete Mathematics ; Integer multicommodity flows ; Integer programming ; Minimum multicut ; Multiway cut ; Studies</subject><ispartof>European journal of operational research, 2005-04, Vol.162 (1), p.55-69</ispartof><rights>2003 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 1, 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-b37d759775c44fff7aa3ac782cac4e610be69a835ca3fa4f23a523952ec18d943</citedby><cites>FETCH-LOGICAL-c479t-b37d759775c44fff7aa3ac782cac4e610be69a835ca3fa4f23a523952ec18d943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377221703008348$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a162_3ay_3a2005_3ai_3a1_3ap_3a55-69.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00003243$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Costa, Marie-Christine</creatorcontrib><creatorcontrib>Létocart, Lucas</creatorcontrib><creatorcontrib>Roupin, Frédéric</creatorcontrib><title>Minimal multicut and maximal integer multiflow: A survey</title><title>European journal of operational research</title><description>We present a survey about the maximum integral multiflow and minimum multicut problems and their subproblems, such as the multiterminal cut and the unsplittable flow problems. We consider neither continuous multiflow nor minimum cost multiflow. Most of the results are very recent and some are new. We recall the dual relationship between both problems, give complexity results and algorithms, firstly in unrestricted graphs and secondly in several special graphs: trees, bipartite or planar graphs. A table summarizes the most important results.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Integer multicommodity flows</subject><subject>Integer programming</subject><subject>Minimum multicut</subject><subject>Multiway cut</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE1LxDAUDKLguvoHPBVvHlrz0TSteFkWv2DFi55DTF81pduuSbu6_95XK3s0MHkwmRlehpBzRhNGWXZVJ1B3PuGUCiQSKtQBmbFc8TjLM3pIZsiomHOmjslJCDWllEkmZyR_cq1bmyZaD03v7NBHpi2jtfn-JV3bwzv46bFquq_raBGFwW9hd0qOKtMEOPubc_J6d_uyfIhXz_ePy8Uqtqkq-vhNqFLJQilp07SqKmWMMFbl3BqbQsboG2SFyYW0RlQmrbgwkotCcrAsL4tUzMnllPthGr3xuJbf6c44_bBY6ZHDr1DBU7HlqL2YtBvffQ4Qel13g29xPc1pyoQomEQRn0TWdyF4qPapjOqxTF3rsUw9ljlyWB2aHieThw3YvQPwoBSC3mphWMbx3iHQKnG4kURsEFLqrNAf_RqzbqYswNq2DrwO1kFroXQebK_Lzv23yg_fapTi</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Costa, Marie-Christine</creator><creator>Létocart, Lucas</creator><creator>Roupin, Frédéric</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20050401</creationdate><title>Minimal multicut and maximal integer multiflow: A survey</title><author>Costa, Marie-Christine ; Létocart, Lucas ; Roupin, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-b37d759775c44fff7aa3ac782cac4e610be69a835ca3fa4f23a523952ec18d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Integer multicommodity flows</topic><topic>Integer programming</topic><topic>Minimum multicut</topic><topic>Multiway cut</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Marie-Christine</creatorcontrib><creatorcontrib>Létocart, Lucas</creatorcontrib><creatorcontrib>Roupin, Frédéric</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Marie-Christine</au><au>Létocart, Lucas</au><au>Roupin, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal multicut and maximal integer multiflow: A survey</atitle><jtitle>European journal of operational research</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>162</volume><issue>1</issue><spage>55</spage><epage>69</epage><pages>55-69</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We present a survey about the maximum integral multiflow and minimum multicut problems and their subproblems, such as the multiterminal cut and the unsplittable flow problems. We consider neither continuous multiflow nor minimum cost multiflow. Most of the results are very recent and some are new. We recall the dual relationship between both problems, give complexity results and algorithms, firstly in unrestricted graphs and secondly in several special graphs: trees, bipartite or planar graphs. A table summarizes the most important results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2003.10.037</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2005-04, Vol.162 (1), p.55-69
issn 0377-2217
1872-6860
language eng
recordid cdi_hal_primary_oai_HAL_hal_00003243v2
source RePEc; Elsevier ScienceDirect Journals
subjects Algorithms
Approximation
Complexity
Computer Science
Discrete Mathematics
Integer multicommodity flows
Integer programming
Minimum multicut
Multiway cut
Studies
title Minimal multicut and maximal integer multiflow: A survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20multicut%20and%20maximal%20integer%20multiflow:%20A%20survey&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Costa,%20Marie-Christine&rft.date=2005-04-01&rft.volume=162&rft.issue=1&rft.spage=55&rft.epage=69&rft.pages=55-69&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2003.10.037&rft_dat=%3Cproquest_hal_p%3E730586411%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204133915&rft_id=info:pmid/&rft_els_id=S0377221703008348&rfr_iscdi=true