Dynamics of a faceted nematic-smectic-B front in thin-sample directional solidification
We present an experimental study of the directional-solidification patterns of a nematic-smectic-B front. The chosen system is C4H9-(C6H10)2CN (in short, CCH4) in 12 microm-thick samples, and in the planar configuration (director parallel to the plane of the sample). The nematic-smectic-B interface...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2002-01, Vol.65 (1 Pt 1), p.011702-011702, Article 011702 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 011702 |
---|---|
container_issue | 1 Pt 1 |
container_start_page | 011702 |
container_title | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
container_volume | 65 |
creator | Börzsönyi, T Akamatsu, S Faivre, G |
description | We present an experimental study of the directional-solidification patterns of a nematic-smectic-B front. The chosen system is C4H9-(C6H10)2CN (in short, CCH4) in 12 microm-thick samples, and in the planar configuration (director parallel to the plane of the sample). The nematic-smectic-B interface presents a facet in one direction-the direction parallel to the smectic layers--and is otherwise rough and devoid of forbidden directions. We measure the Mullins-Sekerka instability threshold and establish the morphology diagram of the system as a function of the solidification rate V and the angle straight theta(0) between the facet and the isotherms. We focus on the phenomena occurring immediately above the instability threshold when straight theta(0) is neither very small nor close to 90 degrees. Under these conditions, we observe drifting shallow cells and a type of solitary wave, called "faceton," which consists essentially of an isolated macroscopic facet traveling laterally at such a velocity that its growth rate with respect to the liquid is small. Facetons may propagate either in a stationary or an oscillatory way. The detailed study of their dynamics casts light on the microscopic growth mechanisms of the facets in this system. |
doi_str_mv | 10.1103/PhysRevE.65.011702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00002787v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71414689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-8747824db9d82c09ff8869292f5320b6f7cac1975427bfb95743f2e930e3ca7e3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMotlb_gAfJSfCwNR-bTXKstX5AQRHFY8hmExrZ3dTNttB_b5ZWncsMM8-8hweAS4ymGCN6-7raxTe7XUwLNkUYc0SOwBgjyTLKBT9OM6MyzYyNwFmMXwhRQkV-CkYYC4QSPwaf97tWN95EGBzU0Glje1vB1ja69yaLjTVDv4OuC20PfQv7lW-zqJt1bWHlu-EeWl3DGGpfeeeNHhbn4MTpOtqLQ5-Aj4fF-_wpW748Ps9ny8xQyvpM8JwLklelrAQxSDonRCGJJI5RgsrCcaMNlpzlhJeulIzn1BErKbLUaG7pBNzsc1e6VuvON7rbqaC9epot1bBDqUjSscWJvd6z6y58b2zsVeOjsXWtWxs2UXGc47wQMoFkD5ouxNhZ95eMkRrUq1_1qmBqrz49XR3SN2Vjq_-Xg2v6Ax4ZgCY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71414689</pqid></control><display><type>article</type><title>Dynamics of a faceted nematic-smectic-B front in thin-sample directional solidification</title><source>American Physical Society Journals</source><creator>Börzsönyi, T ; Akamatsu, S ; Faivre, G</creator><creatorcontrib>Börzsönyi, T ; Akamatsu, S ; Faivre, G</creatorcontrib><description>We present an experimental study of the directional-solidification patterns of a nematic-smectic-B front. The chosen system is C4H9-(C6H10)2CN (in short, CCH4) in 12 microm-thick samples, and in the planar configuration (director parallel to the plane of the sample). The nematic-smectic-B interface presents a facet in one direction-the direction parallel to the smectic layers--and is otherwise rough and devoid of forbidden directions. We measure the Mullins-Sekerka instability threshold and establish the morphology diagram of the system as a function of the solidification rate V and the angle straight theta(0) between the facet and the isotherms. We focus on the phenomena occurring immediately above the instability threshold when straight theta(0) is neither very small nor close to 90 degrees. Under these conditions, we observe drifting shallow cells and a type of solitary wave, called "faceton," which consists essentially of an isolated macroscopic facet traveling laterally at such a velocity that its growth rate with respect to the liquid is small. Facetons may propagate either in a stationary or an oscillatory way. The detailed study of their dynamics casts light on the microscopic growth mechanisms of the facets in this system.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.65.011702</identifier><identifier>PMID: 11800702</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2002-01, Vol.65 (1 Pt 1), p.011702-011702, Article 011702</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-8747824db9d82c09ff8869292f5320b6f7cac1975427bfb95743f2e930e3ca7e3</citedby><cites>FETCH-LOGICAL-c335t-8747824db9d82c09ff8869292f5320b6f7cac1975427bfb95743f2e930e3ca7e3</cites><orcidid>0000-0003-0723-4523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11800702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00002787$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Börzsönyi, T</creatorcontrib><creatorcontrib>Akamatsu, S</creatorcontrib><creatorcontrib>Faivre, G</creatorcontrib><title>Dynamics of a faceted nematic-smectic-B front in thin-sample directional solidification</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We present an experimental study of the directional-solidification patterns of a nematic-smectic-B front. The chosen system is C4H9-(C6H10)2CN (in short, CCH4) in 12 microm-thick samples, and in the planar configuration (director parallel to the plane of the sample). The nematic-smectic-B interface presents a facet in one direction-the direction parallel to the smectic layers--and is otherwise rough and devoid of forbidden directions. We measure the Mullins-Sekerka instability threshold and establish the morphology diagram of the system as a function of the solidification rate V and the angle straight theta(0) between the facet and the isotherms. We focus on the phenomena occurring immediately above the instability threshold when straight theta(0) is neither very small nor close to 90 degrees. Under these conditions, we observe drifting shallow cells and a type of solitary wave, called "faceton," which consists essentially of an isolated macroscopic facet traveling laterally at such a velocity that its growth rate with respect to the liquid is small. Facetons may propagate either in a stationary or an oscillatory way. The detailed study of their dynamics casts light on the microscopic growth mechanisms of the facets in this system.</description><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMotlb_gAfJSfCwNR-bTXKstX5AQRHFY8hmExrZ3dTNttB_b5ZWncsMM8-8hweAS4ymGCN6-7raxTe7XUwLNkUYc0SOwBgjyTLKBT9OM6MyzYyNwFmMXwhRQkV-CkYYC4QSPwaf97tWN95EGBzU0Glje1vB1ja69yaLjTVDv4OuC20PfQv7lW-zqJt1bWHlu-EeWl3DGGpfeeeNHhbn4MTpOtqLQ5-Aj4fF-_wpW748Ps9ny8xQyvpM8JwLklelrAQxSDonRCGJJI5RgsrCcaMNlpzlhJeulIzn1BErKbLUaG7pBNzsc1e6VuvON7rbqaC9epot1bBDqUjSscWJvd6z6y58b2zsVeOjsXWtWxs2UXGc47wQMoFkD5ouxNhZ95eMkRrUq1_1qmBqrz49XR3SN2Vjq_-Xg2v6Ax4ZgCY</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Börzsönyi, T</creator><creator>Akamatsu, S</creator><creator>Faivre, G</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0723-4523</orcidid></search><sort><creationdate>20020101</creationdate><title>Dynamics of a faceted nematic-smectic-B front in thin-sample directional solidification</title><author>Börzsönyi, T ; Akamatsu, S ; Faivre, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-8747824db9d82c09ff8869292f5320b6f7cac1975427bfb95743f2e930e3ca7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Börzsönyi, T</creatorcontrib><creatorcontrib>Akamatsu, S</creatorcontrib><creatorcontrib>Faivre, G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Börzsönyi, T</au><au>Akamatsu, S</au><au>Faivre, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of a faceted nematic-smectic-B front in thin-sample directional solidification</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2002-01-01</date><risdate>2002</risdate><volume>65</volume><issue>1 Pt 1</issue><spage>011702</spage><epage>011702</epage><pages>011702-011702</pages><artnum>011702</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><eissn>1550-2376</eissn><abstract>We present an experimental study of the directional-solidification patterns of a nematic-smectic-B front. The chosen system is C4H9-(C6H10)2CN (in short, CCH4) in 12 microm-thick samples, and in the planar configuration (director parallel to the plane of the sample). The nematic-smectic-B interface presents a facet in one direction-the direction parallel to the smectic layers--and is otherwise rough and devoid of forbidden directions. We measure the Mullins-Sekerka instability threshold and establish the morphology diagram of the system as a function of the solidification rate V and the angle straight theta(0) between the facet and the isotherms. We focus on the phenomena occurring immediately above the instability threshold when straight theta(0) is neither very small nor close to 90 degrees. Under these conditions, we observe drifting shallow cells and a type of solitary wave, called "faceton," which consists essentially of an isolated macroscopic facet traveling laterally at such a velocity that its growth rate with respect to the liquid is small. Facetons may propagate either in a stationary or an oscillatory way. The detailed study of their dynamics casts light on the microscopic growth mechanisms of the facets in this system.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>11800702</pmid><doi>10.1103/PhysRevE.65.011702</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0723-4523</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2002-01, Vol.65 (1 Pt 1), p.011702-011702, Article 011702 |
issn | 1539-3755 1063-651X 1095-3787 1550-2376 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00002787v1 |
source | American Physical Society Journals |
title | Dynamics of a faceted nematic-smectic-B front in thin-sample directional solidification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20a%20faceted%20nematic-smectic-B%20front%20in%20thin-sample%20directional%20solidification&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=B%C3%B6rzs%C3%B6nyi,%20T&rft.date=2002-01-01&rft.volume=65&rft.issue=1%20Pt%201&rft.spage=011702&rft.epage=011702&rft.pages=011702-011702&rft.artnum=011702&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.65.011702&rft_dat=%3Cproquest_hal_p%3E71414689%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71414689&rft_id=info:pmid/11800702&rfr_iscdi=true |