Grain scale modeling of the bendability of AA6xxx Al alloy sheet
Bending sheet metal is a common shaping operation but, at high strains, may lead to failure that is difficult to predict from either standard mechanical tests or models. A recent experimental study of bending AA 6xxx sheet for automotive applications has shown that through-thickness strain localizat...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2013-10, Vol.583, p.96-104 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | |
container_start_page | 96 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 583 |
creator | Mattei, Laurent Daniel, Dominique Guiglionda, Gilles Moulin, Nicolas Klöcker, Helmut Driver, Julian |
description | Bending sheet metal is a common shaping operation but, at high strains, may lead to failure that is difficult to predict from either standard mechanical tests or models. A recent experimental study of bending AA 6xxx sheet for automotive applications has shown that through-thickness strain localization controls damage development. Here, a new finite element microstructure based model of the standard bending test is introduced to predict strain localization during bending. The sheet metal is modeled as a grain aggregate, each grain having its own flow stress. The model is validated by comparison with a standard model and experimental results through an analysis of the critical plastic strain at the outer surface. It is applied to the bending of industrial AA6xxx sheet alloys and correctly describes the respective influences of sheet thickness, grain size and shape, and work hardening. In particular the model brings out the primary importance of large-strain hardening and the flow stress distribution width. It can be used to give simple guidelines for designing highly bendable sheet metal. |
doi_str_mv | 10.1016/j.msea.2013.06.044 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_emse_00962433v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509313006941</els_id><sourcerecordid>S0921509313006941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-f03827cee35070f15e1086bd9671275dd5f66a482ed8a06c4ab8d043d4eb75f63</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKdfwKe8-CK0Xpo0acEHi-gmDHzR55AmV5fRtSMpY_v2tkz26NPB3e9_x_0IuWeQMmDyaZNuI5o0A8ZTkCkIcUFmrFA8ESWXl2QGZcaSHEp-TW5i3AAAE5DPyMsiGN_RaE2LdNs7bH33Q_uGDmukNXbO1L71w3FqVZU8HA60aqlp2_5I4xpxuCVXjWkj3v3VOfl-f_t6XSarz8XHa7VKrOBsSBrgRaYsIs9BQcNyZFDI2pVSsUzlzuWNlEYUGbrCgLTC1IUDwZ3AWo0zPiePp71r0-pd8FsTjro3Xi-rlcbxew1QykxwvmcjnJ1gG_oYAzbnBAM9CdMbPQnTkzANUo_CxtDDKbQzk44mmM76eE5mSuaFBDVyzycOx3f3HoOO1mNn0fmAdtCu9_-d-QXUAn71</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grain scale modeling of the bendability of AA6xxx Al alloy sheet</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mattei, Laurent ; Daniel, Dominique ; Guiglionda, Gilles ; Moulin, Nicolas ; Klöcker, Helmut ; Driver, Julian</creator><creatorcontrib>Mattei, Laurent ; Daniel, Dominique ; Guiglionda, Gilles ; Moulin, Nicolas ; Klöcker, Helmut ; Driver, Julian</creatorcontrib><description>Bending sheet metal is a common shaping operation but, at high strains, may lead to failure that is difficult to predict from either standard mechanical tests or models. A recent experimental study of bending AA 6xxx sheet for automotive applications has shown that through-thickness strain localization controls damage development. Here, a new finite element microstructure based model of the standard bending test is introduced to predict strain localization during bending. The sheet metal is modeled as a grain aggregate, each grain having its own flow stress. The model is validated by comparison with a standard model and experimental results through an analysis of the critical plastic strain at the outer surface. It is applied to the bending of industrial AA6xxx sheet alloys and correctly describes the respective influences of sheet thickness, grain size and shape, and work hardening. In particular the model brings out the primary importance of large-strain hardening and the flow stress distribution width. It can be used to give simple guidelines for designing highly bendable sheet metal.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2013.06.044</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Aluminum sheet ; Applications ; Applied sciences ; Automotive engineering ; Bending ; Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures ; Cross-disciplinary physics: materials science; rheology ; Elasticity. Plasticity ; Engineering Sciences ; Engineering techniques in metallurgy. Applications. Other aspects ; Exact sciences and technology ; Finite element model ; Fractures ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Physics ; Strain hardening ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2013-10, Vol.583, p.96-104</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-f03827cee35070f15e1086bd9671275dd5f66a482ed8a06c4ab8d043d4eb75f63</citedby><cites>FETCH-LOGICAL-c431t-f03827cee35070f15e1086bd9671275dd5f66a482ed8a06c4ab8d043d4eb75f63</cites><orcidid>0000-0002-4946-0142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2013.06.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27658607$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal-emse.ccsd.cnrs.fr/emse-00962433$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mattei, Laurent</creatorcontrib><creatorcontrib>Daniel, Dominique</creatorcontrib><creatorcontrib>Guiglionda, Gilles</creatorcontrib><creatorcontrib>Moulin, Nicolas</creatorcontrib><creatorcontrib>Klöcker, Helmut</creatorcontrib><creatorcontrib>Driver, Julian</creatorcontrib><title>Grain scale modeling of the bendability of AA6xxx Al alloy sheet</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Bending sheet metal is a common shaping operation but, at high strains, may lead to failure that is difficult to predict from either standard mechanical tests or models. A recent experimental study of bending AA 6xxx sheet for automotive applications has shown that through-thickness strain localization controls damage development. Here, a new finite element microstructure based model of the standard bending test is introduced to predict strain localization during bending. The sheet metal is modeled as a grain aggregate, each grain having its own flow stress. The model is validated by comparison with a standard model and experimental results through an analysis of the critical plastic strain at the outer surface. It is applied to the bending of industrial AA6xxx sheet alloys and correctly describes the respective influences of sheet thickness, grain size and shape, and work hardening. In particular the model brings out the primary importance of large-strain hardening and the flow stress distribution width. It can be used to give simple guidelines for designing highly bendable sheet metal.</description><subject>Aluminum sheet</subject><subject>Applications</subject><subject>Applied sciences</subject><subject>Automotive engineering</subject><subject>Bending</subject><subject>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Elasticity. Plasticity</subject><subject>Engineering Sciences</subject><subject>Engineering techniques in metallurgy. Applications. Other aspects</subject><subject>Exact sciences and technology</subject><subject>Finite element model</subject><subject>Fractures</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Strain hardening</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOKdfwKe8-CK0Xpo0acEHi-gmDHzR55AmV5fRtSMpY_v2tkz26NPB3e9_x_0IuWeQMmDyaZNuI5o0A8ZTkCkIcUFmrFA8ESWXl2QGZcaSHEp-TW5i3AAAE5DPyMsiGN_RaE2LdNs7bH33Q_uGDmukNXbO1L71w3FqVZU8HA60aqlp2_5I4xpxuCVXjWkj3v3VOfl-f_t6XSarz8XHa7VKrOBsSBrgRaYsIs9BQcNyZFDI2pVSsUzlzuWNlEYUGbrCgLTC1IUDwZ3AWo0zPiePp71r0-pd8FsTjro3Xi-rlcbxew1QykxwvmcjnJ1gG_oYAzbnBAM9CdMbPQnTkzANUo_CxtDDKbQzk44mmM76eE5mSuaFBDVyzycOx3f3HoOO1mNn0fmAdtCu9_-d-QXUAn71</recordid><startdate>20131020</startdate><enddate>20131020</enddate><creator>Mattei, Laurent</creator><creator>Daniel, Dominique</creator><creator>Guiglionda, Gilles</creator><creator>Moulin, Nicolas</creator><creator>Klöcker, Helmut</creator><creator>Driver, Julian</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4946-0142</orcidid></search><sort><creationdate>20131020</creationdate><title>Grain scale modeling of the bendability of AA6xxx Al alloy sheet</title><author>Mattei, Laurent ; Daniel, Dominique ; Guiglionda, Gilles ; Moulin, Nicolas ; Klöcker, Helmut ; Driver, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-f03827cee35070f15e1086bd9671275dd5f66a482ed8a06c4ab8d043d4eb75f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum sheet</topic><topic>Applications</topic><topic>Applied sciences</topic><topic>Automotive engineering</topic><topic>Bending</topic><topic>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Elasticity. Plasticity</topic><topic>Engineering Sciences</topic><topic>Engineering techniques in metallurgy. Applications. Other aspects</topic><topic>Exact sciences and technology</topic><topic>Finite element model</topic><topic>Fractures</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Strain hardening</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattei, Laurent</creatorcontrib><creatorcontrib>Daniel, Dominique</creatorcontrib><creatorcontrib>Guiglionda, Gilles</creatorcontrib><creatorcontrib>Moulin, Nicolas</creatorcontrib><creatorcontrib>Klöcker, Helmut</creatorcontrib><creatorcontrib>Driver, Julian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattei, Laurent</au><au>Daniel, Dominique</au><au>Guiglionda, Gilles</au><au>Moulin, Nicolas</au><au>Klöcker, Helmut</au><au>Driver, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain scale modeling of the bendability of AA6xxx Al alloy sheet</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2013-10-20</date><risdate>2013</risdate><volume>583</volume><spage>96</spage><epage>104</epage><pages>96-104</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Bending sheet metal is a common shaping operation but, at high strains, may lead to failure that is difficult to predict from either standard mechanical tests or models. A recent experimental study of bending AA 6xxx sheet for automotive applications has shown that through-thickness strain localization controls damage development. Here, a new finite element microstructure based model of the standard bending test is introduced to predict strain localization during bending. The sheet metal is modeled as a grain aggregate, each grain having its own flow stress. The model is validated by comparison with a standard model and experimental results through an analysis of the critical plastic strain at the outer surface. It is applied to the bending of industrial AA6xxx sheet alloys and correctly describes the respective influences of sheet thickness, grain size and shape, and work hardening. In particular the model brings out the primary importance of large-strain hardening and the flow stress distribution width. It can be used to give simple guidelines for designing highly bendable sheet metal.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2013.06.044</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4946-0142</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2013-10, Vol.583, p.96-104 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_emse_00962433v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminum sheet Applications Applied sciences Automotive engineering Bending Cold working, work hardening annealing, quenching, tempering, recovery, and recrystallization textures Cross-disciplinary physics: materials science rheology Elasticity. Plasticity Engineering Sciences Engineering techniques in metallurgy. Applications. Other aspects Exact sciences and technology Finite element model Fractures Materials science Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Microstructure Physics Strain hardening Treatment of materials and its effects on microstructure and properties |
title | Grain scale modeling of the bendability of AA6xxx Al alloy sheet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20scale%20modeling%20of%20the%20bendability%20of%20AA6xxx%20Al%20alloy%20sheet&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Mattei,%20Laurent&rft.date=2013-10-20&rft.volume=583&rft.spage=96&rft.epage=104&rft.pages=96-104&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2013.06.044&rft_dat=%3Celsevier_hal_p%3ES0921509313006941%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0921509313006941&rfr_iscdi=true |