Grain scale modeling of the bendability of AA6xxx Al alloy sheet

Bending sheet metal is a common shaping operation but, at high strains, may lead to failure that is difficult to predict from either standard mechanical tests or models. A recent experimental study of bending AA 6xxx sheet for automotive applications has shown that through-thickness strain localizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2013-10, Vol.583, p.96-104
Hauptverfasser: Mattei, Laurent, Daniel, Dominique, Guiglionda, Gilles, Moulin, Nicolas, Klöcker, Helmut, Driver, Julian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue
container_start_page 96
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 583
creator Mattei, Laurent
Daniel, Dominique
Guiglionda, Gilles
Moulin, Nicolas
Klöcker, Helmut
Driver, Julian
description Bending sheet metal is a common shaping operation but, at high strains, may lead to failure that is difficult to predict from either standard mechanical tests or models. A recent experimental study of bending AA 6xxx sheet for automotive applications has shown that through-thickness strain localization controls damage development. Here, a new finite element microstructure based model of the standard bending test is introduced to predict strain localization during bending. The sheet metal is modeled as a grain aggregate, each grain having its own flow stress. The model is validated by comparison with a standard model and experimental results through an analysis of the critical plastic strain at the outer surface. It is applied to the bending of industrial AA6xxx sheet alloys and correctly describes the respective influences of sheet thickness, grain size and shape, and work hardening. In particular the model brings out the primary importance of large-strain hardening and the flow stress distribution width. It can be used to give simple guidelines for designing highly bendable sheet metal.
doi_str_mv 10.1016/j.msea.2013.06.044
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_emse_00962433v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509313006941</els_id><sourcerecordid>S0921509313006941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-f03827cee35070f15e1086bd9671275dd5f66a482ed8a06c4ab8d043d4eb75f63</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKdfwKe8-CK0Xpo0acEHi-gmDHzR55AmV5fRtSMpY_v2tkz26NPB3e9_x_0IuWeQMmDyaZNuI5o0A8ZTkCkIcUFmrFA8ESWXl2QGZcaSHEp-TW5i3AAAE5DPyMsiGN_RaE2LdNs7bH33Q_uGDmukNXbO1L71w3FqVZU8HA60aqlp2_5I4xpxuCVXjWkj3v3VOfl-f_t6XSarz8XHa7VKrOBsSBrgRaYsIs9BQcNyZFDI2pVSsUzlzuWNlEYUGbrCgLTC1IUDwZ3AWo0zPiePp71r0-pd8FsTjro3Xi-rlcbxew1QykxwvmcjnJ1gG_oYAzbnBAM9CdMbPQnTkzANUo_CxtDDKbQzk44mmM76eE5mSuaFBDVyzycOx3f3HoOO1mNn0fmAdtCu9_-d-QXUAn71</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grain scale modeling of the bendability of AA6xxx Al alloy sheet</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mattei, Laurent ; Daniel, Dominique ; Guiglionda, Gilles ; Moulin, Nicolas ; Klöcker, Helmut ; Driver, Julian</creator><creatorcontrib>Mattei, Laurent ; Daniel, Dominique ; Guiglionda, Gilles ; Moulin, Nicolas ; Klöcker, Helmut ; Driver, Julian</creatorcontrib><description>Bending sheet metal is a common shaping operation but, at high strains, may lead to failure that is difficult to predict from either standard mechanical tests or models. A recent experimental study of bending AA 6xxx sheet for automotive applications has shown that through-thickness strain localization controls damage development. Here, a new finite element microstructure based model of the standard bending test is introduced to predict strain localization during bending. The sheet metal is modeled as a grain aggregate, each grain having its own flow stress. The model is validated by comparison with a standard model and experimental results through an analysis of the critical plastic strain at the outer surface. It is applied to the bending of industrial AA6xxx sheet alloys and correctly describes the respective influences of sheet thickness, grain size and shape, and work hardening. In particular the model brings out the primary importance of large-strain hardening and the flow stress distribution width. It can be used to give simple guidelines for designing highly bendable sheet metal.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2013.06.044</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Aluminum sheet ; Applications ; Applied sciences ; Automotive engineering ; Bending ; Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures ; Cross-disciplinary physics: materials science; rheology ; Elasticity. Plasticity ; Engineering Sciences ; Engineering techniques in metallurgy. Applications. Other aspects ; Exact sciences and technology ; Finite element model ; Fractures ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Physics ; Strain hardening ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2013-10, Vol.583, p.96-104</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-f03827cee35070f15e1086bd9671275dd5f66a482ed8a06c4ab8d043d4eb75f63</citedby><cites>FETCH-LOGICAL-c431t-f03827cee35070f15e1086bd9671275dd5f66a482ed8a06c4ab8d043d4eb75f63</cites><orcidid>0000-0002-4946-0142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2013.06.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27658607$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal-emse.ccsd.cnrs.fr/emse-00962433$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mattei, Laurent</creatorcontrib><creatorcontrib>Daniel, Dominique</creatorcontrib><creatorcontrib>Guiglionda, Gilles</creatorcontrib><creatorcontrib>Moulin, Nicolas</creatorcontrib><creatorcontrib>Klöcker, Helmut</creatorcontrib><creatorcontrib>Driver, Julian</creatorcontrib><title>Grain scale modeling of the bendability of AA6xxx Al alloy sheet</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Bending sheet metal is a common shaping operation but, at high strains, may lead to failure that is difficult to predict from either standard mechanical tests or models. A recent experimental study of bending AA 6xxx sheet for automotive applications has shown that through-thickness strain localization controls damage development. Here, a new finite element microstructure based model of the standard bending test is introduced to predict strain localization during bending. The sheet metal is modeled as a grain aggregate, each grain having its own flow stress. The model is validated by comparison with a standard model and experimental results through an analysis of the critical plastic strain at the outer surface. It is applied to the bending of industrial AA6xxx sheet alloys and correctly describes the respective influences of sheet thickness, grain size and shape, and work hardening. In particular the model brings out the primary importance of large-strain hardening and the flow stress distribution width. It can be used to give simple guidelines for designing highly bendable sheet metal.</description><subject>Aluminum sheet</subject><subject>Applications</subject><subject>Applied sciences</subject><subject>Automotive engineering</subject><subject>Bending</subject><subject>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Elasticity. Plasticity</subject><subject>Engineering Sciences</subject><subject>Engineering techniques in metallurgy. Applications. Other aspects</subject><subject>Exact sciences and technology</subject><subject>Finite element model</subject><subject>Fractures</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Strain hardening</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOKdfwKe8-CK0Xpo0acEHi-gmDHzR55AmV5fRtSMpY_v2tkz26NPB3e9_x_0IuWeQMmDyaZNuI5o0A8ZTkCkIcUFmrFA8ESWXl2QGZcaSHEp-TW5i3AAAE5DPyMsiGN_RaE2LdNs7bH33Q_uGDmukNXbO1L71w3FqVZU8HA60aqlp2_5I4xpxuCVXjWkj3v3VOfl-f_t6XSarz8XHa7VKrOBsSBrgRaYsIs9BQcNyZFDI2pVSsUzlzuWNlEYUGbrCgLTC1IUDwZ3AWo0zPiePp71r0-pd8FsTjro3Xi-rlcbxew1QykxwvmcjnJ1gG_oYAzbnBAM9CdMbPQnTkzANUo_CxtDDKbQzk44mmM76eE5mSuaFBDVyzycOx3f3HoOO1mNn0fmAdtCu9_-d-QXUAn71</recordid><startdate>20131020</startdate><enddate>20131020</enddate><creator>Mattei, Laurent</creator><creator>Daniel, Dominique</creator><creator>Guiglionda, Gilles</creator><creator>Moulin, Nicolas</creator><creator>Klöcker, Helmut</creator><creator>Driver, Julian</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4946-0142</orcidid></search><sort><creationdate>20131020</creationdate><title>Grain scale modeling of the bendability of AA6xxx Al alloy sheet</title><author>Mattei, Laurent ; Daniel, Dominique ; Guiglionda, Gilles ; Moulin, Nicolas ; Klöcker, Helmut ; Driver, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-f03827cee35070f15e1086bd9671275dd5f66a482ed8a06c4ab8d043d4eb75f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum sheet</topic><topic>Applications</topic><topic>Applied sciences</topic><topic>Automotive engineering</topic><topic>Bending</topic><topic>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Elasticity. Plasticity</topic><topic>Engineering Sciences</topic><topic>Engineering techniques in metallurgy. Applications. Other aspects</topic><topic>Exact sciences and technology</topic><topic>Finite element model</topic><topic>Fractures</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Strain hardening</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattei, Laurent</creatorcontrib><creatorcontrib>Daniel, Dominique</creatorcontrib><creatorcontrib>Guiglionda, Gilles</creatorcontrib><creatorcontrib>Moulin, Nicolas</creatorcontrib><creatorcontrib>Klöcker, Helmut</creatorcontrib><creatorcontrib>Driver, Julian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattei, Laurent</au><au>Daniel, Dominique</au><au>Guiglionda, Gilles</au><au>Moulin, Nicolas</au><au>Klöcker, Helmut</au><au>Driver, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain scale modeling of the bendability of AA6xxx Al alloy sheet</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2013-10-20</date><risdate>2013</risdate><volume>583</volume><spage>96</spage><epage>104</epage><pages>96-104</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Bending sheet metal is a common shaping operation but, at high strains, may lead to failure that is difficult to predict from either standard mechanical tests or models. A recent experimental study of bending AA 6xxx sheet for automotive applications has shown that through-thickness strain localization controls damage development. Here, a new finite element microstructure based model of the standard bending test is introduced to predict strain localization during bending. The sheet metal is modeled as a grain aggregate, each grain having its own flow stress. The model is validated by comparison with a standard model and experimental results through an analysis of the critical plastic strain at the outer surface. It is applied to the bending of industrial AA6xxx sheet alloys and correctly describes the respective influences of sheet thickness, grain size and shape, and work hardening. In particular the model brings out the primary importance of large-strain hardening and the flow stress distribution width. It can be used to give simple guidelines for designing highly bendable sheet metal.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2013.06.044</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4946-0142</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2013-10, Vol.583, p.96-104
issn 0921-5093
1873-4936
language eng
recordid cdi_hal_primary_oai_HAL_emse_00962433v1
source Access via ScienceDirect (Elsevier)
subjects Aluminum sheet
Applications
Applied sciences
Automotive engineering
Bending
Cold working, work hardening
annealing, quenching, tempering, recovery, and recrystallization
textures
Cross-disciplinary physics: materials science
rheology
Elasticity. Plasticity
Engineering Sciences
Engineering techniques in metallurgy. Applications. Other aspects
Exact sciences and technology
Finite element model
Fractures
Materials science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microstructure
Physics
Strain hardening
Treatment of materials and its effects on microstructure and properties
title Grain scale modeling of the bendability of AA6xxx Al alloy sheet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20scale%20modeling%20of%20the%20bendability%20of%20AA6xxx%20Al%20alloy%20sheet&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Mattei,%20Laurent&rft.date=2013-10-20&rft.volume=583&rft.spage=96&rft.epage=104&rft.pages=96-104&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2013.06.044&rft_dat=%3Celsevier_hal_p%3ES0921509313006941%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0921509313006941&rfr_iscdi=true