Multi-product lot-sizing and sequencing on a single imperfect machine
A problem of lot-sizing and sequencing several products on a single machine is studied. The machine is imperfect in two senses: it can produce defective items and it can breakdown. The number of defective items for each product is given as an integer valued non-decreasing function of the manufacture...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2011-12, Vol.50 (3), p.465-482 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | 3 |
container_start_page | 465 |
container_title | Computational optimization and applications |
container_volume | 50 |
creator | Dolgui, A. Kovalyov, M. Y. Shchamialiova, K. |
description | A problem of lot-sizing and sequencing several products on a single machine is studied. The machine is imperfect in two senses: it can produce defective items and it can breakdown. The number of defective items for each product is given as an integer valued non-decreasing function of the manufactured quantity. The total machine breakdown time is given as a real valued non-decreasing function of the manufactured quantities of all the products. A sequence-dependent setup time is required to switch the machine from manufacturing one product to another. Two problem settings are considered. In the first, the objective is to minimize the completion time of the last item, provided that all the product demands for the good quality items are satisfied. In the second, the goal is to minimize the total cost of demand dissatisfaction, subject to an assumption that the completion time of the last item does not exceed a given upper bound. Computational complexity and algorithmic results are presented, including an FPTAS for a special case of the cost minimization problem, and computer experiments with the FPTAS. |
doi_str_mv | 10.1007/s10589-010-9346-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_emse_00673912v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2517728171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-145a50f8f9c37614104a6cb8642bc06b3fb0b538c1e1fab3bb92dbeae000454e3</originalsourceid><addsrcrecordid>eNp1kc1Lw0AQxRdRsFb_AG_Bkwirsx_ZZI-lVCtUvOh52d1O2pR81Gwi6F_vloiC4Glm4PeG93iEXDK4ZQDZXWCQ5poCA6qFVJQfkQlLM0F5ruUxmYDmiioAcUrOQtgBgM4En5DF01D1Jd137XrwfVK1PQ3lZ9lsEtusk4BvAzb-cLZNYpMQtwqTst5jV2Dka-u3ZYPn5KSwVcCL7zklr_eLl_mSrp4fHuezFfUiFz1lMrUpFHmhvcgUkwykVd7lSnLnQTlROHCpyD1DVlgnnNN87dBitCtTiWJKbsa_W1uZfVfWtvswrS3NcrYyWAc0ACoTmvF3FuHrEY7hYozQm7oMHqvKNtgOwTBgWnElhYro1R901w5dE6MYDWm0qoFHiI2Q79oQOix-HDAwhxLMWIKJJZhDCeag4aMmRLbZYPf7-H_RF_Y2iCo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905761902</pqid></control><display><type>article</type><title>Multi-product lot-sizing and sequencing on a single imperfect machine</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dolgui, A. ; Kovalyov, M. Y. ; Shchamialiova, K.</creator><creatorcontrib>Dolgui, A. ; Kovalyov, M. Y. ; Shchamialiova, K.</creatorcontrib><description>A problem of lot-sizing and sequencing several products on a single machine is studied. The machine is imperfect in two senses: it can produce defective items and it can breakdown. The number of defective items for each product is given as an integer valued non-decreasing function of the manufactured quantity. The total machine breakdown time is given as a real valued non-decreasing function of the manufactured quantities of all the products. A sequence-dependent setup time is required to switch the machine from manufacturing one product to another. Two problem settings are considered. In the first, the objective is to minimize the completion time of the last item, provided that all the product demands for the good quality items are satisfied. In the second, the goal is to minimize the total cost of demand dissatisfaction, subject to an assumption that the completion time of the last item does not exceed a given upper bound. Computational complexity and algorithmic results are presented, including an FPTAS for a special case of the cost minimization problem, and computer experiments with the FPTAS.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-010-9346-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Breakdown ; Completion time ; Convex and Discrete Geometry ; Cost engineering ; Environment and Society ; Environmental Sciences ; Experiments ; Inequality ; Management Science ; Marketing ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Production scheduling ; Random variables ; Sequencing ; Statistics ; Studies ; Traveling salesman problem</subject><ispartof>Computational optimization and applications, 2011-12, Vol.50 (3), p.465-482</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Springer Science+Business Media, LLC 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-145a50f8f9c37614104a6cb8642bc06b3fb0b538c1e1fab3bb92dbeae000454e3</citedby><cites>FETCH-LOGICAL-c383t-145a50f8f9c37614104a6cb8642bc06b3fb0b538c1e1fab3bb92dbeae000454e3</cites><orcidid>0000-0003-0527-4716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-010-9346-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-010-9346-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal-emse.ccsd.cnrs.fr/emse-00673912$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolgui, A.</creatorcontrib><creatorcontrib>Kovalyov, M. Y.</creatorcontrib><creatorcontrib>Shchamialiova, K.</creatorcontrib><title>Multi-product lot-sizing and sequencing on a single imperfect machine</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>A problem of lot-sizing and sequencing several products on a single machine is studied. The machine is imperfect in two senses: it can produce defective items and it can breakdown. The number of defective items for each product is given as an integer valued non-decreasing function of the manufactured quantity. The total machine breakdown time is given as a real valued non-decreasing function of the manufactured quantities of all the products. A sequence-dependent setup time is required to switch the machine from manufacturing one product to another. Two problem settings are considered. In the first, the objective is to minimize the completion time of the last item, provided that all the product demands for the good quality items are satisfied. In the second, the goal is to minimize the total cost of demand dissatisfaction, subject to an assumption that the completion time of the last item does not exceed a given upper bound. Computational complexity and algorithmic results are presented, including an FPTAS for a special case of the cost minimization problem, and computer experiments with the FPTAS.</description><subject>Breakdown</subject><subject>Completion time</subject><subject>Convex and Discrete Geometry</subject><subject>Cost engineering</subject><subject>Environment and Society</subject><subject>Environmental Sciences</subject><subject>Experiments</subject><subject>Inequality</subject><subject>Management Science</subject><subject>Marketing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Production scheduling</subject><subject>Random variables</subject><subject>Sequencing</subject><subject>Statistics</subject><subject>Studies</subject><subject>Traveling salesman problem</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1Lw0AQxRdRsFb_AG_Bkwirsx_ZZI-lVCtUvOh52d1O2pR81Gwi6F_vloiC4Glm4PeG93iEXDK4ZQDZXWCQ5poCA6qFVJQfkQlLM0F5ruUxmYDmiioAcUrOQtgBgM4En5DF01D1Jd137XrwfVK1PQ3lZ9lsEtusk4BvAzb-cLZNYpMQtwqTst5jV2Dka-u3ZYPn5KSwVcCL7zklr_eLl_mSrp4fHuezFfUiFz1lMrUpFHmhvcgUkwykVd7lSnLnQTlROHCpyD1DVlgnnNN87dBitCtTiWJKbsa_W1uZfVfWtvswrS3NcrYyWAc0ACoTmvF3FuHrEY7hYozQm7oMHqvKNtgOwTBgWnElhYro1R901w5dE6MYDWm0qoFHiI2Q79oQOix-HDAwhxLMWIKJJZhDCeag4aMmRLbZYPf7-H_RF_Y2iCo</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Dolgui, A.</creator><creator>Kovalyov, M. Y.</creator><creator>Shchamialiova, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0527-4716</orcidid></search><sort><creationdate>20111201</creationdate><title>Multi-product lot-sizing and sequencing on a single imperfect machine</title><author>Dolgui, A. ; Kovalyov, M. Y. ; Shchamialiova, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-145a50f8f9c37614104a6cb8642bc06b3fb0b538c1e1fab3bb92dbeae000454e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Breakdown</topic><topic>Completion time</topic><topic>Convex and Discrete Geometry</topic><topic>Cost engineering</topic><topic>Environment and Society</topic><topic>Environmental Sciences</topic><topic>Experiments</topic><topic>Inequality</topic><topic>Management Science</topic><topic>Marketing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Production scheduling</topic><topic>Random variables</topic><topic>Sequencing</topic><topic>Statistics</topic><topic>Studies</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgui, A.</creatorcontrib><creatorcontrib>Kovalyov, M. Y.</creatorcontrib><creatorcontrib>Shchamialiova, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgui, A.</au><au>Kovalyov, M. Y.</au><au>Shchamialiova, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-product lot-sizing and sequencing on a single imperfect machine</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>50</volume><issue>3</issue><spage>465</spage><epage>482</epage><pages>465-482</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>A problem of lot-sizing and sequencing several products on a single machine is studied. The machine is imperfect in two senses: it can produce defective items and it can breakdown. The number of defective items for each product is given as an integer valued non-decreasing function of the manufactured quantity. The total machine breakdown time is given as a real valued non-decreasing function of the manufactured quantities of all the products. A sequence-dependent setup time is required to switch the machine from manufacturing one product to another. Two problem settings are considered. In the first, the objective is to minimize the completion time of the last item, provided that all the product demands for the good quality items are satisfied. In the second, the goal is to minimize the total cost of demand dissatisfaction, subject to an assumption that the completion time of the last item does not exceed a given upper bound. Computational complexity and algorithmic results are presented, including an FPTAS for a special case of the cost minimization problem, and computer experiments with the FPTAS.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10589-010-9346-2</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0527-4716</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2011-12, Vol.50 (3), p.465-482 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_emse_00673912v1 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Breakdown Completion time Convex and Discrete Geometry Cost engineering Environment and Society Environmental Sciences Experiments Inequality Management Science Marketing Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Production scheduling Random variables Sequencing Statistics Studies Traveling salesman problem |
title | Multi-product lot-sizing and sequencing on a single imperfect machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-product%20lot-sizing%20and%20sequencing%20on%20a%20single%20imperfect%20machine&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Dolgui,%20A.&rft.date=2011-12-01&rft.volume=50&rft.issue=3&rft.spage=465&rft.epage=482&rft.pages=465-482&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-010-9346-2&rft_dat=%3Cproquest_hal_p%3E2517728171%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905761902&rft_id=info:pmid/&rfr_iscdi=true |