Cradle-to-Gate Life Cycle Assessment (LCA) of GaN Power Semiconductor Device
Wide Band Gap (WBG) semiconductors have the potential to provide significant improvements in energy efficiency over conventional silicon (Si) semiconductors. While the potential for energy efficiency gains is widely researched, the relation to the energy and resource use during manufacturing process...
Gespeichert in:
Veröffentlicht in: | Global sustainability 2024-01, Vol.16 (2), p.901 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 901 |
container_title | Global sustainability |
container_volume | 16 |
creator | Vauche, Laura Guillemaud, Gabin Lopes Barbosa, Joao-Carlos Di Cioccio, Léa |
description | Wide Band Gap (WBG) semiconductors have the potential to provide significant improvements in energy efficiency over conventional silicon (Si) semiconductors. While the potential for energy efficiency gains is widely researched, the relation to the energy and resource use during manufacturing processes remains insufficiently studied. In order to appraise the performance of the technology thoroughly, issues such as raw material scarcity, toxicity and environmental impacts need to be investigated in detail. However, sparse Life Cycle Assessment (LCA) data are available for the two currently most widespread WBG semiconductor materials, gallium nitride (GaN or GaN/Si) and silicon carbide (SiC). This paper, for the first time, presents a cradle-to-gate life cycle assessment for a GaN/Si power device. To allow for a full range of indicators, life cycle assessment method EF 3.1 was used to analyze the results. The results identify environmental hotspots associated with different materials and processes: electricity consumption for the processes and clean room facilities, direct emissions of greenhouse gases, gold (when used), and volatile organic chemicals. Finally, we compare this result with publicly available data for Si, GaN and SiC power devices. |
doi_str_mv | 10.3390/su16020901 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_04667615v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780927814</galeid><sourcerecordid>A780927814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-5513ebc7d2e053d52af44e6ec90dbd3fb30acc4639879626cc4b8e1b5f4bda703</originalsourceid><addsrcrecordid>eNpVkcFq3DAQhk1JoSHZS59AkEs24HRk2ZJ1NE66WTBtadqzkOVR4sW7SiR50337uDh005nD_AzfDP8wSfKZwjVjEr6EkXLIQAL9kJxmIGhKoYCTd_pTsghhA1MwRiXlp0lTe90NmEaXrnRE0vQWSX0wA5IqBAxhi7tILpu6WhJnyUp_Iz_cC3pyj9veuF03mug8ucF9b_A8-Wj1EHDxVs-S319vf9V3afN9ta6rJjU5ZDEtCsqwNaLLEArWFZm2eY4cjYSu7ZhtGWhjcs5kKSTP-KTbEmlb2LzttAB2liznvY96UE--32p_UE736q5qlEGtIOdccFrs6cRezOyTd88jhqg2bvS7yZ7KJC1L4EKKibqeqQc9oOp31kWvzZTdfCbafupXogSZiZLmRwtvAxMT8U980GMIan3_83_2amaNdyF4tP88U1B_P6eOn2OvSLuGog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918806797</pqid></control><display><type>article</type><title>Cradle-to-Gate Life Cycle Assessment (LCA) of GaN Power Semiconductor Device</title><source>Cambridge Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Vauche, Laura ; Guillemaud, Gabin ; Lopes Barbosa, Joao-Carlos ; Di Cioccio, Léa</creator><creatorcontrib>Vauche, Laura ; Guillemaud, Gabin ; Lopes Barbosa, Joao-Carlos ; Di Cioccio, Léa</creatorcontrib><description>Wide Band Gap (WBG) semiconductors have the potential to provide significant improvements in energy efficiency over conventional silicon (Si) semiconductors. While the potential for energy efficiency gains is widely researched, the relation to the energy and resource use during manufacturing processes remains insufficiently studied. In order to appraise the performance of the technology thoroughly, issues such as raw material scarcity, toxicity and environmental impacts need to be investigated in detail. However, sparse Life Cycle Assessment (LCA) data are available for the two currently most widespread WBG semiconductor materials, gallium nitride (GaN or GaN/Si) and silicon carbide (SiC). This paper, for the first time, presents a cradle-to-gate life cycle assessment for a GaN/Si power device. To allow for a full range of indicators, life cycle assessment method EF 3.1 was used to analyze the results. The results identify environmental hotspots associated with different materials and processes: electricity consumption for the processes and clean room facilities, direct emissions of greenhouse gases, gold (when used), and volatile organic chemicals. Finally, we compare this result with publicly available data for Si, GaN and SiC power devices.</description><identifier>ISSN: 2071-1050</identifier><identifier>ISSN: 2059-4798</identifier><identifier>EISSN: 2071-1050</identifier><identifier>EISSN: 2059-4798</identifier><identifier>DOI: 10.3390/su16020901</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air pollution ; Chemical vapor deposition ; Emissions ; Energy efficiency ; Energy management systems ; Engineering Sciences ; Gallium nitrate ; Greenhouse gases ; Manufacturing ; Marketing research ; Micro and nanotechnologies ; Microelectronics ; Nitrides ; Nuclear energy ; Raw materials ; Semiconductors ; Silicon ; Silicon compounds ; Volatile organic compounds</subject><ispartof>Global sustainability, 2024-01, Vol.16 (2), p.901</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-5513ebc7d2e053d52af44e6ec90dbd3fb30acc4639879626cc4b8e1b5f4bda703</citedby><cites>FETCH-LOGICAL-c402t-5513ebc7d2e053d52af44e6ec90dbd3fb30acc4639879626cc4b8e1b5f4bda703</cites><orcidid>0000-0002-9553-3445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27923,27924</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04667615$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vauche, Laura</creatorcontrib><creatorcontrib>Guillemaud, Gabin</creatorcontrib><creatorcontrib>Lopes Barbosa, Joao-Carlos</creatorcontrib><creatorcontrib>Di Cioccio, Léa</creatorcontrib><title>Cradle-to-Gate Life Cycle Assessment (LCA) of GaN Power Semiconductor Device</title><title>Global sustainability</title><description>Wide Band Gap (WBG) semiconductors have the potential to provide significant improvements in energy efficiency over conventional silicon (Si) semiconductors. While the potential for energy efficiency gains is widely researched, the relation to the energy and resource use during manufacturing processes remains insufficiently studied. In order to appraise the performance of the technology thoroughly, issues such as raw material scarcity, toxicity and environmental impacts need to be investigated in detail. However, sparse Life Cycle Assessment (LCA) data are available for the two currently most widespread WBG semiconductor materials, gallium nitride (GaN or GaN/Si) and silicon carbide (SiC). This paper, for the first time, presents a cradle-to-gate life cycle assessment for a GaN/Si power device. To allow for a full range of indicators, life cycle assessment method EF 3.1 was used to analyze the results. The results identify environmental hotspots associated with different materials and processes: electricity consumption for the processes and clean room facilities, direct emissions of greenhouse gases, gold (when used), and volatile organic chemicals. Finally, we compare this result with publicly available data for Si, GaN and SiC power devices.</description><subject>Air pollution</subject><subject>Chemical vapor deposition</subject><subject>Emissions</subject><subject>Energy efficiency</subject><subject>Energy management systems</subject><subject>Engineering Sciences</subject><subject>Gallium nitrate</subject><subject>Greenhouse gases</subject><subject>Manufacturing</subject><subject>Marketing research</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Nitrides</subject><subject>Nuclear energy</subject><subject>Raw materials</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon compounds</subject><subject>Volatile organic compounds</subject><issn>2071-1050</issn><issn>2059-4798</issn><issn>2071-1050</issn><issn>2059-4798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkcFq3DAQhk1JoSHZS59AkEs24HRk2ZJ1NE66WTBtadqzkOVR4sW7SiR50337uDh005nD_AzfDP8wSfKZwjVjEr6EkXLIQAL9kJxmIGhKoYCTd_pTsghhA1MwRiXlp0lTe90NmEaXrnRE0vQWSX0wA5IqBAxhi7tILpu6WhJnyUp_Iz_cC3pyj9veuF03mug8ucF9b_A8-Wj1EHDxVs-S319vf9V3afN9ta6rJjU5ZDEtCsqwNaLLEArWFZm2eY4cjYSu7ZhtGWhjcs5kKSTP-KTbEmlb2LzttAB2liznvY96UE--32p_UE736q5qlEGtIOdccFrs6cRezOyTd88jhqg2bvS7yZ7KJC1L4EKKibqeqQc9oOp31kWvzZTdfCbafupXogSZiZLmRwtvAxMT8U980GMIan3_83_2amaNdyF4tP88U1B_P6eOn2OvSLuGog</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Vauche, Laura</creator><creator>Guillemaud, Gabin</creator><creator>Lopes Barbosa, Joao-Carlos</creator><creator>Di Cioccio, Léa</creator><general>MDPI AG</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9553-3445</orcidid></search><sort><creationdate>20240101</creationdate><title>Cradle-to-Gate Life Cycle Assessment (LCA) of GaN Power Semiconductor Device</title><author>Vauche, Laura ; Guillemaud, Gabin ; Lopes Barbosa, Joao-Carlos ; Di Cioccio, Léa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-5513ebc7d2e053d52af44e6ec90dbd3fb30acc4639879626cc4b8e1b5f4bda703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Chemical vapor deposition</topic><topic>Emissions</topic><topic>Energy efficiency</topic><topic>Energy management systems</topic><topic>Engineering Sciences</topic><topic>Gallium nitrate</topic><topic>Greenhouse gases</topic><topic>Manufacturing</topic><topic>Marketing research</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Nitrides</topic><topic>Nuclear energy</topic><topic>Raw materials</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon compounds</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vauche, Laura</creatorcontrib><creatorcontrib>Guillemaud, Gabin</creatorcontrib><creatorcontrib>Lopes Barbosa, Joao-Carlos</creatorcontrib><creatorcontrib>Di Cioccio, Léa</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vauche, Laura</au><au>Guillemaud, Gabin</au><au>Lopes Barbosa, Joao-Carlos</au><au>Di Cioccio, Léa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cradle-to-Gate Life Cycle Assessment (LCA) of GaN Power Semiconductor Device</atitle><jtitle>Global sustainability</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>901</spage><pages>901-</pages><issn>2071-1050</issn><issn>2059-4798</issn><eissn>2071-1050</eissn><eissn>2059-4798</eissn><abstract>Wide Band Gap (WBG) semiconductors have the potential to provide significant improvements in energy efficiency over conventional silicon (Si) semiconductors. While the potential for energy efficiency gains is widely researched, the relation to the energy and resource use during manufacturing processes remains insufficiently studied. In order to appraise the performance of the technology thoroughly, issues such as raw material scarcity, toxicity and environmental impacts need to be investigated in detail. However, sparse Life Cycle Assessment (LCA) data are available for the two currently most widespread WBG semiconductor materials, gallium nitride (GaN or GaN/Si) and silicon carbide (SiC). This paper, for the first time, presents a cradle-to-gate life cycle assessment for a GaN/Si power device. To allow for a full range of indicators, life cycle assessment method EF 3.1 was used to analyze the results. The results identify environmental hotspots associated with different materials and processes: electricity consumption for the processes and clean room facilities, direct emissions of greenhouse gases, gold (when used), and volatile organic chemicals. Finally, we compare this result with publicly available data for Si, GaN and SiC power devices.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16020901</doi><orcidid>https://orcid.org/0000-0002-9553-3445</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Global sustainability, 2024-01, Vol.16 (2), p.901 |
issn | 2071-1050 2059-4798 2071-1050 2059-4798 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_04667615v1 |
source | Cambridge Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Air pollution Chemical vapor deposition Emissions Energy efficiency Energy management systems Engineering Sciences Gallium nitrate Greenhouse gases Manufacturing Marketing research Micro and nanotechnologies Microelectronics Nitrides Nuclear energy Raw materials Semiconductors Silicon Silicon compounds Volatile organic compounds |
title | Cradle-to-Gate Life Cycle Assessment (LCA) of GaN Power Semiconductor Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cradle-to-Gate%20Life%20Cycle%20Assessment%20(LCA)%20of%20GaN%20Power%20Semiconductor%20Device&rft.jtitle=Global%20sustainability&rft.au=Vauche,%20Laura&rft.date=2024-01-01&rft.volume=16&rft.issue=2&rft.spage=901&rft.pages=901-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16020901&rft_dat=%3Cgale_hal_p%3EA780927814%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918806797&rft_id=info:pmid/&rft_galeid=A780927814&rfr_iscdi=true |