Microstructural evolution of periclase under irradiation by molecular dynamics simulations
The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experi...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-06, Vol.133 (21) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 133 |
creator | Chartier, Alain Fossati, Paul Van Brutzel, Laurent Dorosh, Orest Jagielski, Jacek |
description | The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experimental measures. The two diverge at around 0.2 dpa, above which lattice and volume swellings follow separate trends. Below this value, dislocation loops nucleate from point defects clusters, built up by progressive aggregation of both magnesium and oxygen interstitials. Very small
1
2⟨110⟩ loops lying in {001} planes and made of (MgO)6 interstitials could be characterized. They serve as seeds for the subsequent growth of dislocation loops in all three {110}, {001}, and {111} planes, which then follows a sublinear law. The
1
2⟨110⟩ loops lying in the {011} planes become dominant as loop diameters increase beyond 15 nm. Above 0.2 dpa, we observe (i) the relative decrease of lattice swelling mainly because the very dense dislocations loops recombine and stabilize into less dense dislocation forests and, concomitantly, (ii) the fast increase of volume swelling caused by the occurrence of significant voids of up to 32 vacancies. |
doi_str_mv | 10.1063/5.0144673 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_04603812v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821453861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-aa996e3aa231531e6b99fcd1072e69d5cf204fcce053e4847f724f0002357a603</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pwW8Q8KTQmfc2xzHUCRMvevESsjTBjLapSTvYt7d7YTsInh7I8-NPnj8AtxhNMBL0kU8QZkzk9AyMMCpklnOOzsEIIYKzQubyElyltEII44LKEfh68yaG1MXedH3UFbTrUPWdDw0MDrY2elPpZGHflDZCH6Muvd6tlxtYh8qavtIRlptG194kmHw9PGxBugYXTlfJ3hzmGHw-P33M5tni_eV1Nl1khnLRZVpLKSzVmlDMKbZiKaUzJUY5sUKW3DiCmDPGIk4tK1jucsIcGg6iPNcC0TG43-d-60q10dc6blTQXs2nC2WsVogNqsBkjQd7t7dtDD-9TZ1ahT42w_cUKQhmnBYCnxK31aRo3TEWI7WtWXF1qHmwD3ubjO92hx_xOsQTVG3p_sN_k38B5RuLbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821453861</pqid></control><display><type>article</type><title>Microstructural evolution of periclase under irradiation by molecular dynamics simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chartier, Alain ; Fossati, Paul ; Van Brutzel, Laurent ; Dorosh, Orest ; Jagielski, Jacek</creator><creatorcontrib>Chartier, Alain ; Fossati, Paul ; Van Brutzel, Laurent ; Dorosh, Orest ; Jagielski, Jacek</creatorcontrib><description>The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experimental measures. The two diverge at around 0.2 dpa, above which lattice and volume swellings follow separate trends. Below this value, dislocation loops nucleate from point defects clusters, built up by progressive aggregation of both magnesium and oxygen interstitials. Very small
1
2⟨110⟩ loops lying in {001} planes and made of (MgO)6 interstitials could be characterized. They serve as seeds for the subsequent growth of dislocation loops in all three {110}, {001}, and {111} planes, which then follows a sublinear law. The
1
2⟨110⟩ loops lying in the {011} planes become dominant as loop diameters increase beyond 15 nm. Above 0.2 dpa, we observe (i) the relative decrease of lattice swelling mainly because the very dense dislocations loops recombine and stabilize into less dense dislocation forests and, concomitantly, (ii) the fast increase of volume swelling caused by the occurrence of significant voids of up to 32 vacancies.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0144673</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Condensed Matter ; Diameters ; Dislocation density ; Dislocation loops ; Interstitials ; Irradiation ; Magnesium oxide ; Materials Science ; Molecular dynamics ; Periclase ; Physics ; Point defects ; Swelling</subject><ispartof>Journal of applied physics, 2023-06, Vol.133 (21)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-aa996e3aa231531e6b99fcd1072e69d5cf204fcce053e4847f724f0002357a603</cites><orcidid>0000-0003-2750-6370 ; 0000-0003-2525-2805 ; 0000-0001-8230-6422 ; 0000-0002-8519-6430 ; 0000-0001-9760-8415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0144673$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04603812$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chartier, Alain</creatorcontrib><creatorcontrib>Fossati, Paul</creatorcontrib><creatorcontrib>Van Brutzel, Laurent</creatorcontrib><creatorcontrib>Dorosh, Orest</creatorcontrib><creatorcontrib>Jagielski, Jacek</creatorcontrib><title>Microstructural evolution of periclase under irradiation by molecular dynamics simulations</title><title>Journal of applied physics</title><description>The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experimental measures. The two diverge at around 0.2 dpa, above which lattice and volume swellings follow separate trends. Below this value, dislocation loops nucleate from point defects clusters, built up by progressive aggregation of both magnesium and oxygen interstitials. Very small
1
2⟨110⟩ loops lying in {001} planes and made of (MgO)6 interstitials could be characterized. They serve as seeds for the subsequent growth of dislocation loops in all three {110}, {001}, and {111} planes, which then follows a sublinear law. The
1
2⟨110⟩ loops lying in the {011} planes become dominant as loop diameters increase beyond 15 nm. Above 0.2 dpa, we observe (i) the relative decrease of lattice swelling mainly because the very dense dislocations loops recombine and stabilize into less dense dislocation forests and, concomitantly, (ii) the fast increase of volume swelling caused by the occurrence of significant voids of up to 32 vacancies.</description><subject>Applied physics</subject><subject>Condensed Matter</subject><subject>Diameters</subject><subject>Dislocation density</subject><subject>Dislocation loops</subject><subject>Interstitials</subject><subject>Irradiation</subject><subject>Magnesium oxide</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Periclase</subject><subject>Physics</subject><subject>Point defects</subject><subject>Swelling</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgCs7pwW8Q8KTQmfc2xzHUCRMvevESsjTBjLapSTvYt7d7YTsInh7I8-NPnj8AtxhNMBL0kU8QZkzk9AyMMCpklnOOzsEIIYKzQubyElyltEII44LKEfh68yaG1MXedH3UFbTrUPWdDw0MDrY2elPpZGHflDZCH6Muvd6tlxtYh8qavtIRlptG194kmHw9PGxBugYXTlfJ3hzmGHw-P33M5tni_eV1Nl1khnLRZVpLKSzVmlDMKbZiKaUzJUY5sUKW3DiCmDPGIk4tK1jucsIcGg6iPNcC0TG43-d-60q10dc6blTQXs2nC2WsVogNqsBkjQd7t7dtDD-9TZ1ahT42w_cUKQhmnBYCnxK31aRo3TEWI7WtWXF1qHmwD3ubjO92hx_xOsQTVG3p_sN_k38B5RuLbg</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Chartier, Alain</creator><creator>Fossati, Paul</creator><creator>Van Brutzel, Laurent</creator><creator>Dorosh, Orest</creator><creator>Jagielski, Jacek</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2750-6370</orcidid><orcidid>https://orcid.org/0000-0003-2525-2805</orcidid><orcidid>https://orcid.org/0000-0001-8230-6422</orcidid><orcidid>https://orcid.org/0000-0002-8519-6430</orcidid><orcidid>https://orcid.org/0000-0001-9760-8415</orcidid></search><sort><creationdate>20230607</creationdate><title>Microstructural evolution of periclase under irradiation by molecular dynamics simulations</title><author>Chartier, Alain ; Fossati, Paul ; Van Brutzel, Laurent ; Dorosh, Orest ; Jagielski, Jacek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-aa996e3aa231531e6b99fcd1072e69d5cf204fcce053e4847f724f0002357a603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Condensed Matter</topic><topic>Diameters</topic><topic>Dislocation density</topic><topic>Dislocation loops</topic><topic>Interstitials</topic><topic>Irradiation</topic><topic>Magnesium oxide</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Periclase</topic><topic>Physics</topic><topic>Point defects</topic><topic>Swelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chartier, Alain</creatorcontrib><creatorcontrib>Fossati, Paul</creatorcontrib><creatorcontrib>Van Brutzel, Laurent</creatorcontrib><creatorcontrib>Dorosh, Orest</creatorcontrib><creatorcontrib>Jagielski, Jacek</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chartier, Alain</au><au>Fossati, Paul</au><au>Van Brutzel, Laurent</au><au>Dorosh, Orest</au><au>Jagielski, Jacek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural evolution of periclase under irradiation by molecular dynamics simulations</atitle><jtitle>Journal of applied physics</jtitle><date>2023-06-07</date><risdate>2023</risdate><volume>133</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experimental measures. The two diverge at around 0.2 dpa, above which lattice and volume swellings follow separate trends. Below this value, dislocation loops nucleate from point defects clusters, built up by progressive aggregation of both magnesium and oxygen interstitials. Very small
1
2⟨110⟩ loops lying in {001} planes and made of (MgO)6 interstitials could be characterized. They serve as seeds for the subsequent growth of dislocation loops in all three {110}, {001}, and {111} planes, which then follows a sublinear law. The
1
2⟨110⟩ loops lying in the {011} planes become dominant as loop diameters increase beyond 15 nm. Above 0.2 dpa, we observe (i) the relative decrease of lattice swelling mainly because the very dense dislocations loops recombine and stabilize into less dense dislocation forests and, concomitantly, (ii) the fast increase of volume swelling caused by the occurrence of significant voids of up to 32 vacancies.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0144673</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2750-6370</orcidid><orcidid>https://orcid.org/0000-0003-2525-2805</orcidid><orcidid>https://orcid.org/0000-0001-8230-6422</orcidid><orcidid>https://orcid.org/0000-0002-8519-6430</orcidid><orcidid>https://orcid.org/0000-0001-9760-8415</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-06, Vol.133 (21) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_04603812v1 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Condensed Matter Diameters Dislocation density Dislocation loops Interstitials Irradiation Magnesium oxide Materials Science Molecular dynamics Periclase Physics Point defects Swelling |
title | Microstructural evolution of periclase under irradiation by molecular dynamics simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20evolution%20of%20periclase%20under%20irradiation%20by%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Chartier,%20Alain&rft.date=2023-06-07&rft.volume=133&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0144673&rft_dat=%3Cproquest_hal_p%3E2821453861%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821453861&rft_id=info:pmid/&rfr_iscdi=true |