Microstructural evolution of periclase under irradiation by molecular dynamics simulations

The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-06, Vol.133 (21)
Hauptverfasser: Chartier, Alain, Fossati, Paul, Van Brutzel, Laurent, Dorosh, Orest, Jagielski, Jacek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Journal of applied physics
container_volume 133
creator Chartier, Alain
Fossati, Paul
Van Brutzel, Laurent
Dorosh, Orest
Jagielski, Jacek
description The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experimental measures. The two diverge at around 0.2 dpa, above which lattice and volume swellings follow separate trends. Below this value, dislocation loops nucleate from point defects clusters, built up by progressive aggregation of both magnesium and oxygen interstitials. Very small 1 2⟨110⟩ loops lying in {001} planes and made of (MgO)6 interstitials could be characterized. They serve as seeds for the subsequent growth of dislocation loops in all three {110}, {001}, and {111} planes, which then follows a sublinear law. The 1 2⟨110⟩ loops lying in the {011} planes become dominant as loop diameters increase beyond 15 nm. Above 0.2 dpa, we observe (i) the relative decrease of lattice swelling mainly because the very dense dislocations loops recombine and stabilize into less dense dislocation forests and, concomitantly, (ii) the fast increase of volume swelling caused by the occurrence of significant voids of up to 32 vacancies.
doi_str_mv 10.1063/5.0144673
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_04603812v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821453861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-aa996e3aa231531e6b99fcd1072e69d5cf204fcce053e4847f724f0002357a603</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pwW8Q8KTQmfc2xzHUCRMvevESsjTBjLapSTvYt7d7YTsInh7I8-NPnj8AtxhNMBL0kU8QZkzk9AyMMCpklnOOzsEIIYKzQubyElyltEII44LKEfh68yaG1MXedH3UFbTrUPWdDw0MDrY2elPpZGHflDZCH6Muvd6tlxtYh8qavtIRlptG194kmHw9PGxBugYXTlfJ3hzmGHw-P33M5tni_eV1Nl1khnLRZVpLKSzVmlDMKbZiKaUzJUY5sUKW3DiCmDPGIk4tK1jucsIcGg6iPNcC0TG43-d-60q10dc6blTQXs2nC2WsVogNqsBkjQd7t7dtDD-9TZ1ahT42w_cUKQhmnBYCnxK31aRo3TEWI7WtWXF1qHmwD3ubjO92hx_xOsQTVG3p_sN_k38B5RuLbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821453861</pqid></control><display><type>article</type><title>Microstructural evolution of periclase under irradiation by molecular dynamics simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chartier, Alain ; Fossati, Paul ; Van Brutzel, Laurent ; Dorosh, Orest ; Jagielski, Jacek</creator><creatorcontrib>Chartier, Alain ; Fossati, Paul ; Van Brutzel, Laurent ; Dorosh, Orest ; Jagielski, Jacek</creatorcontrib><description>The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experimental measures. The two diverge at around 0.2 dpa, above which lattice and volume swellings follow separate trends. Below this value, dislocation loops nucleate from point defects clusters, built up by progressive aggregation of both magnesium and oxygen interstitials. Very small 1 2⟨110⟩ loops lying in {001} planes and made of (MgO)6 interstitials could be characterized. They serve as seeds for the subsequent growth of dislocation loops in all three {110}, {001}, and {111} planes, which then follows a sublinear law. The 1 2⟨110⟩ loops lying in the {011} planes become dominant as loop diameters increase beyond 15 nm. Above 0.2 dpa, we observe (i) the relative decrease of lattice swelling mainly because the very dense dislocations loops recombine and stabilize into less dense dislocation forests and, concomitantly, (ii) the fast increase of volume swelling caused by the occurrence of significant voids of up to 32 vacancies.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0144673</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Condensed Matter ; Diameters ; Dislocation density ; Dislocation loops ; Interstitials ; Irradiation ; Magnesium oxide ; Materials Science ; Molecular dynamics ; Periclase ; Physics ; Point defects ; Swelling</subject><ispartof>Journal of applied physics, 2023-06, Vol.133 (21)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-aa996e3aa231531e6b99fcd1072e69d5cf204fcce053e4847f724f0002357a603</cites><orcidid>0000-0003-2750-6370 ; 0000-0003-2525-2805 ; 0000-0001-8230-6422 ; 0000-0002-8519-6430 ; 0000-0001-9760-8415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0144673$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04603812$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chartier, Alain</creatorcontrib><creatorcontrib>Fossati, Paul</creatorcontrib><creatorcontrib>Van Brutzel, Laurent</creatorcontrib><creatorcontrib>Dorosh, Orest</creatorcontrib><creatorcontrib>Jagielski, Jacek</creatorcontrib><title>Microstructural evolution of periclase under irradiation by molecular dynamics simulations</title><title>Journal of applied physics</title><description>The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experimental measures. The two diverge at around 0.2 dpa, above which lattice and volume swellings follow separate trends. Below this value, dislocation loops nucleate from point defects clusters, built up by progressive aggregation of both magnesium and oxygen interstitials. Very small 1 2⟨110⟩ loops lying in {001} planes and made of (MgO)6 interstitials could be characterized. They serve as seeds for the subsequent growth of dislocation loops in all three {110}, {001}, and {111} planes, which then follows a sublinear law. The 1 2⟨110⟩ loops lying in the {011} planes become dominant as loop diameters increase beyond 15 nm. Above 0.2 dpa, we observe (i) the relative decrease of lattice swelling mainly because the very dense dislocations loops recombine and stabilize into less dense dislocation forests and, concomitantly, (ii) the fast increase of volume swelling caused by the occurrence of significant voids of up to 32 vacancies.</description><subject>Applied physics</subject><subject>Condensed Matter</subject><subject>Diameters</subject><subject>Dislocation density</subject><subject>Dislocation loops</subject><subject>Interstitials</subject><subject>Irradiation</subject><subject>Magnesium oxide</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Periclase</subject><subject>Physics</subject><subject>Point defects</subject><subject>Swelling</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgCs7pwW8Q8KTQmfc2xzHUCRMvevESsjTBjLapSTvYt7d7YTsInh7I8-NPnj8AtxhNMBL0kU8QZkzk9AyMMCpklnOOzsEIIYKzQubyElyltEII44LKEfh68yaG1MXedH3UFbTrUPWdDw0MDrY2elPpZGHflDZCH6Muvd6tlxtYh8qavtIRlptG194kmHw9PGxBugYXTlfJ3hzmGHw-P33M5tni_eV1Nl1khnLRZVpLKSzVmlDMKbZiKaUzJUY5sUKW3DiCmDPGIk4tK1jucsIcGg6iPNcC0TG43-d-60q10dc6blTQXs2nC2WsVogNqsBkjQd7t7dtDD-9TZ1ahT42w_cUKQhmnBYCnxK31aRo3TEWI7WtWXF1qHmwD3ubjO92hx_xOsQTVG3p_sN_k38B5RuLbg</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Chartier, Alain</creator><creator>Fossati, Paul</creator><creator>Van Brutzel, Laurent</creator><creator>Dorosh, Orest</creator><creator>Jagielski, Jacek</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2750-6370</orcidid><orcidid>https://orcid.org/0000-0003-2525-2805</orcidid><orcidid>https://orcid.org/0000-0001-8230-6422</orcidid><orcidid>https://orcid.org/0000-0002-8519-6430</orcidid><orcidid>https://orcid.org/0000-0001-9760-8415</orcidid></search><sort><creationdate>20230607</creationdate><title>Microstructural evolution of periclase under irradiation by molecular dynamics simulations</title><author>Chartier, Alain ; Fossati, Paul ; Van Brutzel, Laurent ; Dorosh, Orest ; Jagielski, Jacek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-aa996e3aa231531e6b99fcd1072e69d5cf204fcce053e4847f724f0002357a603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Condensed Matter</topic><topic>Diameters</topic><topic>Dislocation density</topic><topic>Dislocation loops</topic><topic>Interstitials</topic><topic>Irradiation</topic><topic>Magnesium oxide</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Periclase</topic><topic>Physics</topic><topic>Point defects</topic><topic>Swelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chartier, Alain</creatorcontrib><creatorcontrib>Fossati, Paul</creatorcontrib><creatorcontrib>Van Brutzel, Laurent</creatorcontrib><creatorcontrib>Dorosh, Orest</creatorcontrib><creatorcontrib>Jagielski, Jacek</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chartier, Alain</au><au>Fossati, Paul</au><au>Van Brutzel, Laurent</au><au>Dorosh, Orest</au><au>Jagielski, Jacek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural evolution of periclase under irradiation by molecular dynamics simulations</atitle><jtitle>Journal of applied physics</jtitle><date>2023-06-07</date><risdate>2023</risdate><volume>133</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The response of MgO periclase to irradiation is investigated by means of molecular dynamics simulations, mimicking irradiation by Frenkel pairs accumulation. Both the calculated lattice and volume swellings, which refer, respectively, to the lattice and total volume changes reproduce well the experimental measures. The two diverge at around 0.2 dpa, above which lattice and volume swellings follow separate trends. Below this value, dislocation loops nucleate from point defects clusters, built up by progressive aggregation of both magnesium and oxygen interstitials. Very small 1 2⟨110⟩ loops lying in {001} planes and made of (MgO)6 interstitials could be characterized. They serve as seeds for the subsequent growth of dislocation loops in all three {110}, {001}, and {111} planes, which then follows a sublinear law. The 1 2⟨110⟩ loops lying in the {011} planes become dominant as loop diameters increase beyond 15 nm. Above 0.2 dpa, we observe (i) the relative decrease of lattice swelling mainly because the very dense dislocations loops recombine and stabilize into less dense dislocation forests and, concomitantly, (ii) the fast increase of volume swelling caused by the occurrence of significant voids of up to 32 vacancies.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0144673</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2750-6370</orcidid><orcidid>https://orcid.org/0000-0003-2525-2805</orcidid><orcidid>https://orcid.org/0000-0001-8230-6422</orcidid><orcidid>https://orcid.org/0000-0002-8519-6430</orcidid><orcidid>https://orcid.org/0000-0001-9760-8415</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-06, Vol.133 (21)
issn 0021-8979
1089-7550
language eng
recordid cdi_hal_primary_oai_HAL_cea_04603812v1
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Condensed Matter
Diameters
Dislocation density
Dislocation loops
Interstitials
Irradiation
Magnesium oxide
Materials Science
Molecular dynamics
Periclase
Physics
Point defects
Swelling
title Microstructural evolution of periclase under irradiation by molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20evolution%20of%20periclase%20under%20irradiation%20by%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Chartier,%20Alain&rft.date=2023-06-07&rft.volume=133&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0144673&rft_dat=%3Cproquest_hal_p%3E2821453861%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821453861&rft_id=info:pmid/&rfr_iscdi=true