Effect of the precipitates on the hydrogen desorption kinetics from zirconium-niobium alloys

This study aims at identifying and quantifying the rate-limiting steps of the hydrogen desorption process from unoxidized M5Framatome alloy. Gaseous deuterium charging, Thermal Desorption Spectrometry (TDS), Differential Scanning Calorimetry (DSC) and finite elements simulations of TDS results revea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2021-02, Vol.46 (11), p.8113-8124
Hauptverfasser: Juillet, C., Tupin, M., Martin, F., Auzoux, Q., Berthinier, C., Gaudier, F., Guilbert, T., Toffolon, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8124
container_issue 11
container_start_page 8113
container_title International journal of hydrogen energy
container_volume 46
creator Juillet, C.
Tupin, M.
Martin, F.
Auzoux, Q.
Berthinier, C.
Gaudier, F.
Guilbert, T.
Toffolon, C.
description This study aims at identifying and quantifying the rate-limiting steps of the hydrogen desorption process from unoxidized M5Framatome alloy. Gaseous deuterium charging, Thermal Desorption Spectrometry (TDS), Differential Scanning Calorimetry (DSC) and finite elements simulations of TDS results reveal that hydrogen desorption kinetics from the metal is limited by the surface molecular recombination (similarly to Zircaloy-4) and that part of the hydrogen originated from the elaboration process of M5Framatome and Zr-2.5%Nb is trapped by the Nb-rich precipitates. In the studied conditions and regarding M5Framatome, the desorption flux corresponding to this initially trapped hydrogen reaches its maximum after the total dissolution of the precipitates, which releases hydrogen into solid solution. The kinetic constant corresponding to surface recombination identified on M5Framatome was identical to the one previously determined on Zircaloy-4. Comparison between transformed fraction of βNb → βZr obtained by calorimetry (dashed lines, the left ordinates) and hydrogen desorption flux (continuous lines, right ordinates) on as-received M5 samples submitted to a 10 K min−1 (black lines) and 3 K min−1 (blue lines) temperature ramp as function of temperature. Gaussian peak deconvolutions into 2 peaks of the TDS data are shown in dotted lines. [Display omitted] •The hydrogen desorption kinetics is controlled by the surface recombination step.•By coupling Cast3M with URANIE, the surface recombination constant was quantified.•The desorption rate constant equals: kdes′=3x107.exp(−2.90 x 105RT) m4 mol−1 s−1.•The elaboration process traps a part of hydrogen in the Nb-containing precipitates.•The hydrogen desorption kinetics is correlated to the precipitates dissolution rate.
doi_str_mv 10.1016/j.ijhydene.2020.12.025
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_04394774v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319920345596</els_id><sourcerecordid>oai_HAL_cea_04394774v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-ce944f58b983b93af682aa5545dd102b03b140c14c601e82521bddaa95e7fead3</originalsourceid><addsrcrecordid>eNqFkE1LAzEYhIMoWKt_QfbqYdd87UdullKtUPCiNyFkkzc263ZTkrVQf72pVa-eBoaZgXkQuia4IJhUt13huvXewAAFxTSZtMC0PEET0tQiZ7ypT9EEswrnjAhxji5i7DAmNeZigl4X1oIeM2-zcQ3ZNoB2WzeqEWLmh28vbQf_BkNmIPqwHV3y390Ao9Mxs8Fvsk8XtB_cxyYfnG-TZqrv_T5eojOr-ghXPzpFL_eL5_kyXz09PM5nq1wzXo25BsG5LZtWNKwVTNmqoUqVJS-NIZi2mLWEY024rjCBhpaUtMYoJUqoLSjDpujmuLtWvdwGt1FhL71ycjlbSQ1KYs4Er2u-IylbHbM6-BgD2L8CwfLAU3byl6c88JSEysQzFe-ORUhPdg6CjNrBoMG4BG2Uxrv_Jr4Aa3qDmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of the precipitates on the hydrogen desorption kinetics from zirconium-niobium alloys</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Juillet, C. ; Tupin, M. ; Martin, F. ; Auzoux, Q. ; Berthinier, C. ; Gaudier, F. ; Guilbert, T. ; Toffolon, C.</creator><creatorcontrib>Juillet, C. ; Tupin, M. ; Martin, F. ; Auzoux, Q. ; Berthinier, C. ; Gaudier, F. ; Guilbert, T. ; Toffolon, C.</creatorcontrib><description>This study aims at identifying and quantifying the rate-limiting steps of the hydrogen desorption process from unoxidized M5Framatome alloy. Gaseous deuterium charging, Thermal Desorption Spectrometry (TDS), Differential Scanning Calorimetry (DSC) and finite elements simulations of TDS results reveal that hydrogen desorption kinetics from the metal is limited by the surface molecular recombination (similarly to Zircaloy-4) and that part of the hydrogen originated from the elaboration process of M5Framatome and Zr-2.5%Nb is trapped by the Nb-rich precipitates. In the studied conditions and regarding M5Framatome, the desorption flux corresponding to this initially trapped hydrogen reaches its maximum after the total dissolution of the precipitates, which releases hydrogen into solid solution. The kinetic constant corresponding to surface recombination identified on M5Framatome was identical to the one previously determined on Zircaloy-4. Comparison between transformed fraction of βNb → βZr obtained by calorimetry (dashed lines, the left ordinates) and hydrogen desorption flux (continuous lines, right ordinates) on as-received M5 samples submitted to a 10 K min−1 (black lines) and 3 K min−1 (blue lines) temperature ramp as function of temperature. Gaussian peak deconvolutions into 2 peaks of the TDS data are shown in dotted lines. [Display omitted] •The hydrogen desorption kinetics is controlled by the surface recombination step.•By coupling Cast3M with URANIE, the surface recombination constant was quantified.•The desorption rate constant equals: kdes′=3x107.exp(−2.90 x 105RT) m4 mol−1 s−1.•The elaboration process traps a part of hydrogen in the Nb-containing precipitates.•The hydrogen desorption kinetics is correlated to the precipitates dissolution rate.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2020.12.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Desorption kinetics ; Engineering Sciences ; Hydrogen ; Material chemistry ; Mathematics ; Precipitates ; Thermal desorption mass spectrometry ; Zr–Nb alloys</subject><ispartof>International journal of hydrogen energy, 2021-02, Vol.46 (11), p.8113-8124</ispartof><rights>2020 Hydrogen Energy Publications LLC</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-ce944f58b983b93af682aa5545dd102b03b140c14c601e82521bddaa95e7fead3</citedby><cites>FETCH-LOGICAL-c346t-ce944f58b983b93af682aa5545dd102b03b140c14c601e82521bddaa95e7fead3</cites><orcidid>0000-0002-6797-2491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2020.12.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04394774$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Juillet, C.</creatorcontrib><creatorcontrib>Tupin, M.</creatorcontrib><creatorcontrib>Martin, F.</creatorcontrib><creatorcontrib>Auzoux, Q.</creatorcontrib><creatorcontrib>Berthinier, C.</creatorcontrib><creatorcontrib>Gaudier, F.</creatorcontrib><creatorcontrib>Guilbert, T.</creatorcontrib><creatorcontrib>Toffolon, C.</creatorcontrib><title>Effect of the precipitates on the hydrogen desorption kinetics from zirconium-niobium alloys</title><title>International journal of hydrogen energy</title><description>This study aims at identifying and quantifying the rate-limiting steps of the hydrogen desorption process from unoxidized M5Framatome alloy. Gaseous deuterium charging, Thermal Desorption Spectrometry (TDS), Differential Scanning Calorimetry (DSC) and finite elements simulations of TDS results reveal that hydrogen desorption kinetics from the metal is limited by the surface molecular recombination (similarly to Zircaloy-4) and that part of the hydrogen originated from the elaboration process of M5Framatome and Zr-2.5%Nb is trapped by the Nb-rich precipitates. In the studied conditions and regarding M5Framatome, the desorption flux corresponding to this initially trapped hydrogen reaches its maximum after the total dissolution of the precipitates, which releases hydrogen into solid solution. The kinetic constant corresponding to surface recombination identified on M5Framatome was identical to the one previously determined on Zircaloy-4. Comparison between transformed fraction of βNb → βZr obtained by calorimetry (dashed lines, the left ordinates) and hydrogen desorption flux (continuous lines, right ordinates) on as-received M5 samples submitted to a 10 K min−1 (black lines) and 3 K min−1 (blue lines) temperature ramp as function of temperature. Gaussian peak deconvolutions into 2 peaks of the TDS data are shown in dotted lines. [Display omitted] •The hydrogen desorption kinetics is controlled by the surface recombination step.•By coupling Cast3M with URANIE, the surface recombination constant was quantified.•The desorption rate constant equals: kdes′=3x107.exp(−2.90 x 105RT) m4 mol−1 s−1.•The elaboration process traps a part of hydrogen in the Nb-containing precipitates.•The hydrogen desorption kinetics is correlated to the precipitates dissolution rate.</description><subject>Chemical Sciences</subject><subject>Desorption kinetics</subject><subject>Engineering Sciences</subject><subject>Hydrogen</subject><subject>Material chemistry</subject><subject>Mathematics</subject><subject>Precipitates</subject><subject>Thermal desorption mass spectrometry</subject><subject>Zr–Nb alloys</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEYhIMoWKt_QfbqYdd87UdullKtUPCiNyFkkzc263ZTkrVQf72pVa-eBoaZgXkQuia4IJhUt13huvXewAAFxTSZtMC0PEET0tQiZ7ypT9EEswrnjAhxji5i7DAmNeZigl4X1oIeM2-zcQ3ZNoB2WzeqEWLmh28vbQf_BkNmIPqwHV3y390Ao9Mxs8Fvsk8XtB_cxyYfnG-TZqrv_T5eojOr-ghXPzpFL_eL5_kyXz09PM5nq1wzXo25BsG5LZtWNKwVTNmqoUqVJS-NIZi2mLWEY024rjCBhpaUtMYoJUqoLSjDpujmuLtWvdwGt1FhL71ycjlbSQ1KYs4Er2u-IylbHbM6-BgD2L8CwfLAU3byl6c88JSEysQzFe-ORUhPdg6CjNrBoMG4BG2Uxrv_Jr4Aa3qDmA</recordid><startdate>20210211</startdate><enddate>20210211</enddate><creator>Juillet, C.</creator><creator>Tupin, M.</creator><creator>Martin, F.</creator><creator>Auzoux, Q.</creator><creator>Berthinier, C.</creator><creator>Gaudier, F.</creator><creator>Guilbert, T.</creator><creator>Toffolon, C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6797-2491</orcidid></search><sort><creationdate>20210211</creationdate><title>Effect of the precipitates on the hydrogen desorption kinetics from zirconium-niobium alloys</title><author>Juillet, C. ; Tupin, M. ; Martin, F. ; Auzoux, Q. ; Berthinier, C. ; Gaudier, F. ; Guilbert, T. ; Toffolon, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-ce944f58b983b93af682aa5545dd102b03b140c14c601e82521bddaa95e7fead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>Desorption kinetics</topic><topic>Engineering Sciences</topic><topic>Hydrogen</topic><topic>Material chemistry</topic><topic>Mathematics</topic><topic>Precipitates</topic><topic>Thermal desorption mass spectrometry</topic><topic>Zr–Nb alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juillet, C.</creatorcontrib><creatorcontrib>Tupin, M.</creatorcontrib><creatorcontrib>Martin, F.</creatorcontrib><creatorcontrib>Auzoux, Q.</creatorcontrib><creatorcontrib>Berthinier, C.</creatorcontrib><creatorcontrib>Gaudier, F.</creatorcontrib><creatorcontrib>Guilbert, T.</creatorcontrib><creatorcontrib>Toffolon, C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juillet, C.</au><au>Tupin, M.</au><au>Martin, F.</au><au>Auzoux, Q.</au><au>Berthinier, C.</au><au>Gaudier, F.</au><au>Guilbert, T.</au><au>Toffolon, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the precipitates on the hydrogen desorption kinetics from zirconium-niobium alloys</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2021-02-11</date><risdate>2021</risdate><volume>46</volume><issue>11</issue><spage>8113</spage><epage>8124</epage><pages>8113-8124</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>This study aims at identifying and quantifying the rate-limiting steps of the hydrogen desorption process from unoxidized M5Framatome alloy. Gaseous deuterium charging, Thermal Desorption Spectrometry (TDS), Differential Scanning Calorimetry (DSC) and finite elements simulations of TDS results reveal that hydrogen desorption kinetics from the metal is limited by the surface molecular recombination (similarly to Zircaloy-4) and that part of the hydrogen originated from the elaboration process of M5Framatome and Zr-2.5%Nb is trapped by the Nb-rich precipitates. In the studied conditions and regarding M5Framatome, the desorption flux corresponding to this initially trapped hydrogen reaches its maximum after the total dissolution of the precipitates, which releases hydrogen into solid solution. The kinetic constant corresponding to surface recombination identified on M5Framatome was identical to the one previously determined on Zircaloy-4. Comparison between transformed fraction of βNb → βZr obtained by calorimetry (dashed lines, the left ordinates) and hydrogen desorption flux (continuous lines, right ordinates) on as-received M5 samples submitted to a 10 K min−1 (black lines) and 3 K min−1 (blue lines) temperature ramp as function of temperature. Gaussian peak deconvolutions into 2 peaks of the TDS data are shown in dotted lines. [Display omitted] •The hydrogen desorption kinetics is controlled by the surface recombination step.•By coupling Cast3M with URANIE, the surface recombination constant was quantified.•The desorption rate constant equals: kdes′=3x107.exp(−2.90 x 105RT) m4 mol−1 s−1.•The elaboration process traps a part of hydrogen in the Nb-containing precipitates.•The hydrogen desorption kinetics is correlated to the precipitates dissolution rate.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2020.12.025</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6797-2491</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2021-02, Vol.46 (11), p.8113-8124
issn 0360-3199
1879-3487
language eng
recordid cdi_hal_primary_oai_HAL_cea_04394774v1
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Chemical Sciences
Desorption kinetics
Engineering Sciences
Hydrogen
Material chemistry
Mathematics
Precipitates
Thermal desorption mass spectrometry
Zr–Nb alloys
title Effect of the precipitates on the hydrogen desorption kinetics from zirconium-niobium alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20precipitates%20on%20the%20hydrogen%20desorption%20kinetics%20from%20zirconium-niobium%20alloys&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Juillet,%20C.&rft.date=2021-02-11&rft.volume=46&rft.issue=11&rft.spage=8113&rft.epage=8124&rft.pages=8113-8124&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2020.12.025&rft_dat=%3Chal_cross%3Eoai_HAL_cea_04394774v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0360319920345596&rfr_iscdi=true