A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves

A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2020-12, Vol.905, Article A24
Hauptverfasser: Gai, G., Thomine, O., Kudriakov, S., Hadjadj, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 905
creator Gai, G.
Thomine, O.
Kudriakov, S.
Hadjadj, A.
description A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated against numerical simulations over a wide range of incident Mach numbers $M_s$ and particle volume fractions $\tau _{v,0}$. Two regimes of shock reflection have been identified depending on $M_s$, where the reflected pressure expansion propagates either opposite to the incident shock-wave direction for weak incident Mach numbers or along with it for strong Mach numbers. The numerical simulations reveal the presence of a particle number-density peak for $M_s > 2$ and with particle diameters of the order of ${O}(10)\ \mathrm {\mu } \textrm {m}$. The formation of the number-density peak is discussed and a necessary condition for its existence is proposed for the first time.
doi_str_mv 10.1017/jfm.2020.748
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_04386061v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_748</cupid><sourcerecordid>2454639844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-24ab4f89461670a380866ee63e72dc1e78fd2675f4763e07472bf628a147047e3</originalsourceid><addsrcrecordid>eNptkFFLwzAUhYMoOKdv_oCAT4LdbtIsaR_HUCcMfNHnkLU3W2e61KTb2L-3ZUNffLpw-M7h8hFyz2DEgKnxxtYjDhxGSmQXZMCEzBMlxeSSDAA4TxjjcE1uYtwAsBRyNSCrKd3igVof6p0zbeW31FtqaGyCOdKyig2G2Ke1L9H1HG1MaKvC4bgMvnHYJs6UuKXW-UOkcbfcYNFiSVtP49oXX_Rg9hhvyZU1LuLd-Q7J58vzx2yeLN5f32bTRVIIkG3ChVkKm-VCMqnApBlkUiLKFBUvC4YqsyWXamKF6jJQQvGllTwzTCgQCtMheTztro3TTahqE47am0rPpwtdoNEg0kyCZHvWsQ8ntgn-e4ex1Ru_C9vuPc3FRMg0z4ToqKcTVQQfY0D7O8tA99p1p1332nWnvcNHZ9zUy1CVK_xb_bfwAz4lg5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454639844</pqid></control><display><type>article</type><title>A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves</title><source>Cambridge University Press Journals Complete</source><creator>Gai, G. ; Thomine, O. ; Kudriakov, S. ; Hadjadj, A.</creator><creatorcontrib>Gai, G. ; Thomine, O. ; Kudriakov, S. ; Hadjadj, A.</creatorcontrib><description>A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated against numerical simulations over a wide range of incident Mach numbers $M_s$ and particle volume fractions $\tau _{v,0}$. Two regimes of shock reflection have been identified depending on $M_s$, where the reflected pressure expansion propagates either opposite to the incident shock-wave direction for weak incident Mach numbers or along with it for strong Mach numbers. The numerical simulations reveal the presence of a particle number-density peak for $M_s &gt; 2$ and with particle diameters of the order of ${O}(10)\ \mathrm {\mu } \textrm {m}$. The formation of the number-density peak is discussed and a necessary condition for its existence is proposed for the first time.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.748</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Conservation laws ; Density ; Diameters ; Dispersion ; Fluid mechanics ; Gas density ; Gas flow ; JFM Papers ; Mathematical models ; Mechanics ; Physics ; Reynolds number ; Shock waves ; Simulation ; Topology ; Viscosity ; Water sprays ; Wave direction</subject><ispartof>Journal of fluid mechanics, 2020-12, Vol.905, Article A24</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-24ab4f89461670a380866ee63e72dc1e78fd2675f4763e07472bf628a147047e3</citedby><cites>FETCH-LOGICAL-c406t-24ab4f89461670a380866ee63e72dc1e78fd2675f4763e07472bf628a147047e3</cites><orcidid>0000-0002-4847-3224 ; 0000-0002-1415-0443 ; 0000-0003-3489-8851 ; 0000-0002-1288-9228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202000748X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27902,27903,55605</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04386061$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gai, G.</creatorcontrib><creatorcontrib>Thomine, O.</creatorcontrib><creatorcontrib>Kudriakov, S.</creatorcontrib><creatorcontrib>Hadjadj, A.</creatorcontrib><title>A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated against numerical simulations over a wide range of incident Mach numbers $M_s$ and particle volume fractions $\tau _{v,0}$. Two regimes of shock reflection have been identified depending on $M_s$, where the reflected pressure expansion propagates either opposite to the incident shock-wave direction for weak incident Mach numbers or along with it for strong Mach numbers. The numerical simulations reveal the presence of a particle number-density peak for $M_s &gt; 2$ and with particle diameters of the order of ${O}(10)\ \mathrm {\mu } \textrm {m}$. The formation of the number-density peak is discussed and a necessary condition for its existence is proposed for the first time.</description><subject>Conservation laws</subject><subject>Density</subject><subject>Diameters</subject><subject>Dispersion</subject><subject>Fluid mechanics</subject><subject>Gas density</subject><subject>Gas flow</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Topology</subject><subject>Viscosity</subject><subject>Water sprays</subject><subject>Wave direction</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkFFLwzAUhYMoOKdv_oCAT4LdbtIsaR_HUCcMfNHnkLU3W2e61KTb2L-3ZUNffLpw-M7h8hFyz2DEgKnxxtYjDhxGSmQXZMCEzBMlxeSSDAA4TxjjcE1uYtwAsBRyNSCrKd3igVof6p0zbeW31FtqaGyCOdKyig2G2Ke1L9H1HG1MaKvC4bgMvnHYJs6UuKXW-UOkcbfcYNFiSVtP49oXX_Rg9hhvyZU1LuLd-Q7J58vzx2yeLN5f32bTRVIIkG3ChVkKm-VCMqnApBlkUiLKFBUvC4YqsyWXamKF6jJQQvGllTwzTCgQCtMheTztro3TTahqE47am0rPpwtdoNEg0kyCZHvWsQ8ntgn-e4ex1Ru_C9vuPc3FRMg0z4ToqKcTVQQfY0D7O8tA99p1p1332nWnvcNHZ9zUy1CVK_xb_bfwAz4lg5g</recordid><startdate>20201225</startdate><enddate>20201225</enddate><creator>Gai, G.</creator><creator>Thomine, O.</creator><creator>Kudriakov, S.</creator><creator>Hadjadj, A.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4847-3224</orcidid><orcidid>https://orcid.org/0000-0002-1415-0443</orcidid><orcidid>https://orcid.org/0000-0003-3489-8851</orcidid><orcidid>https://orcid.org/0000-0002-1288-9228</orcidid></search><sort><creationdate>20201225</creationdate><title>A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves</title><author>Gai, G. ; Thomine, O. ; Kudriakov, S. ; Hadjadj, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-24ab4f89461670a380866ee63e72dc1e78fd2675f4763e07472bf628a147047e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Conservation laws</topic><topic>Density</topic><topic>Diameters</topic><topic>Dispersion</topic><topic>Fluid mechanics</topic><topic>Gas density</topic><topic>Gas flow</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Topology</topic><topic>Viscosity</topic><topic>Water sprays</topic><topic>Wave direction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gai, G.</creatorcontrib><creatorcontrib>Thomine, O.</creatorcontrib><creatorcontrib>Kudriakov, S.</creatorcontrib><creatorcontrib>Hadjadj, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gai, G.</au><au>Thomine, O.</au><au>Kudriakov, S.</au><au>Hadjadj, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2020-12-25</date><risdate>2020</risdate><volume>905</volume><artnum>A24</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated against numerical simulations over a wide range of incident Mach numbers $M_s$ and particle volume fractions $\tau _{v,0}$. Two regimes of shock reflection have been identified depending on $M_s$, where the reflected pressure expansion propagates either opposite to the incident shock-wave direction for weak incident Mach numbers or along with it for strong Mach numbers. The numerical simulations reveal the presence of a particle number-density peak for $M_s &gt; 2$ and with particle diameters of the order of ${O}(10)\ \mathrm {\mu } \textrm {m}$. The formation of the number-density peak is discussed and a necessary condition for its existence is proposed for the first time.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.748</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4847-3224</orcidid><orcidid>https://orcid.org/0000-0002-1415-0443</orcidid><orcidid>https://orcid.org/0000-0003-3489-8851</orcidid><orcidid>https://orcid.org/0000-0002-1288-9228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2020-12, Vol.905, Article A24
issn 0022-1120
1469-7645
language eng
recordid cdi_hal_primary_oai_HAL_cea_04386061v1
source Cambridge University Press Journals Complete
subjects Conservation laws
Density
Diameters
Dispersion
Fluid mechanics
Gas density
Gas flow
JFM Papers
Mathematical models
Mechanics
Physics
Reynolds number
Shock waves
Simulation
Topology
Viscosity
Water sprays
Wave direction
title A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20formulation%20of%20a%20spray%20dispersion%20model%20for%20particle/droplet-laden%20flows%20subjected%20to%20shock%20waves&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Gai,%20G.&rft.date=2020-12-25&rft.volume=905&rft.artnum=A24&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.748&rft_dat=%3Cproquest_hal_p%3E2454639844%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454639844&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_748&rfr_iscdi=true