A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves
A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-12, Vol.905, Article A24 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 905 |
creator | Gai, G. Thomine, O. Kudriakov, S. Hadjadj, A. |
description | A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated against numerical simulations over a wide range of incident Mach numbers $M_s$ and particle volume fractions $\tau _{v,0}$. Two regimes of shock reflection have been identified depending on $M_s$, where the reflected pressure expansion propagates either opposite to the incident shock-wave direction for weak incident Mach numbers or along with it for strong Mach numbers. The numerical simulations reveal the presence of a particle number-density peak for $M_s > 2$ and with particle diameters of the order of ${O}(10)\ \mathrm {\mu } \textrm {m}$. The formation of the number-density peak is discussed and a necessary condition for its existence is proposed for the first time. |
doi_str_mv | 10.1017/jfm.2020.748 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_04386061v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_748</cupid><sourcerecordid>2454639844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-24ab4f89461670a380866ee63e72dc1e78fd2675f4763e07472bf628a147047e3</originalsourceid><addsrcrecordid>eNptkFFLwzAUhYMoOKdv_oCAT4LdbtIsaR_HUCcMfNHnkLU3W2e61KTb2L-3ZUNffLpw-M7h8hFyz2DEgKnxxtYjDhxGSmQXZMCEzBMlxeSSDAA4TxjjcE1uYtwAsBRyNSCrKd3igVof6p0zbeW31FtqaGyCOdKyig2G2Ke1L9H1HG1MaKvC4bgMvnHYJs6UuKXW-UOkcbfcYNFiSVtP49oXX_Rg9hhvyZU1LuLd-Q7J58vzx2yeLN5f32bTRVIIkG3ChVkKm-VCMqnApBlkUiLKFBUvC4YqsyWXamKF6jJQQvGllTwzTCgQCtMheTztro3TTahqE47am0rPpwtdoNEg0kyCZHvWsQ8ntgn-e4ex1Ru_C9vuPc3FRMg0z4ToqKcTVQQfY0D7O8tA99p1p1332nWnvcNHZ9zUy1CVK_xb_bfwAz4lg5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454639844</pqid></control><display><type>article</type><title>A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves</title><source>Cambridge University Press Journals Complete</source><creator>Gai, G. ; Thomine, O. ; Kudriakov, S. ; Hadjadj, A.</creator><creatorcontrib>Gai, G. ; Thomine, O. ; Kudriakov, S. ; Hadjadj, A.</creatorcontrib><description>A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated against numerical simulations over a wide range of incident Mach numbers $M_s$ and particle volume fractions $\tau _{v,0}$. Two regimes of shock reflection have been identified depending on $M_s$, where the reflected pressure expansion propagates either opposite to the incident shock-wave direction for weak incident Mach numbers or along with it for strong Mach numbers. The numerical simulations reveal the presence of a particle number-density peak for $M_s > 2$ and with particle diameters of the order of ${O}(10)\ \mathrm {\mu } \textrm {m}$. The formation of the number-density peak is discussed and a necessary condition for its existence is proposed for the first time.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.748</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Conservation laws ; Density ; Diameters ; Dispersion ; Fluid mechanics ; Gas density ; Gas flow ; JFM Papers ; Mathematical models ; Mechanics ; Physics ; Reynolds number ; Shock waves ; Simulation ; Topology ; Viscosity ; Water sprays ; Wave direction</subject><ispartof>Journal of fluid mechanics, 2020-12, Vol.905, Article A24</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-24ab4f89461670a380866ee63e72dc1e78fd2675f4763e07472bf628a147047e3</citedby><cites>FETCH-LOGICAL-c406t-24ab4f89461670a380866ee63e72dc1e78fd2675f4763e07472bf628a147047e3</cites><orcidid>0000-0002-4847-3224 ; 0000-0002-1415-0443 ; 0000-0003-3489-8851 ; 0000-0002-1288-9228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202000748X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27902,27903,55605</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04386061$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gai, G.</creatorcontrib><creatorcontrib>Thomine, O.</creatorcontrib><creatorcontrib>Kudriakov, S.</creatorcontrib><creatorcontrib>Hadjadj, A.</creatorcontrib><title>A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated against numerical simulations over a wide range of incident Mach numbers $M_s$ and particle volume fractions $\tau _{v,0}$. Two regimes of shock reflection have been identified depending on $M_s$, where the reflected pressure expansion propagates either opposite to the incident shock-wave direction for weak incident Mach numbers or along with it for strong Mach numbers. The numerical simulations reveal the presence of a particle number-density peak for $M_s > 2$ and with particle diameters of the order of ${O}(10)\ \mathrm {\mu } \textrm {m}$. The formation of the number-density peak is discussed and a necessary condition for its existence is proposed for the first time.</description><subject>Conservation laws</subject><subject>Density</subject><subject>Diameters</subject><subject>Dispersion</subject><subject>Fluid mechanics</subject><subject>Gas density</subject><subject>Gas flow</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Topology</subject><subject>Viscosity</subject><subject>Water sprays</subject><subject>Wave direction</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkFFLwzAUhYMoOKdv_oCAT4LdbtIsaR_HUCcMfNHnkLU3W2e61KTb2L-3ZUNffLpw-M7h8hFyz2DEgKnxxtYjDhxGSmQXZMCEzBMlxeSSDAA4TxjjcE1uYtwAsBRyNSCrKd3igVof6p0zbeW31FtqaGyCOdKyig2G2Ke1L9H1HG1MaKvC4bgMvnHYJs6UuKXW-UOkcbfcYNFiSVtP49oXX_Rg9hhvyZU1LuLd-Q7J58vzx2yeLN5f32bTRVIIkG3ChVkKm-VCMqnApBlkUiLKFBUvC4YqsyWXamKF6jJQQvGllTwzTCgQCtMheTztro3TTahqE47am0rPpwtdoNEg0kyCZHvWsQ8ntgn-e4ex1Ru_C9vuPc3FRMg0z4ToqKcTVQQfY0D7O8tA99p1p1332nWnvcNHZ9zUy1CVK_xb_bfwAz4lg5g</recordid><startdate>20201225</startdate><enddate>20201225</enddate><creator>Gai, G.</creator><creator>Thomine, O.</creator><creator>Kudriakov, S.</creator><creator>Hadjadj, A.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4847-3224</orcidid><orcidid>https://orcid.org/0000-0002-1415-0443</orcidid><orcidid>https://orcid.org/0000-0003-3489-8851</orcidid><orcidid>https://orcid.org/0000-0002-1288-9228</orcidid></search><sort><creationdate>20201225</creationdate><title>A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves</title><author>Gai, G. ; Thomine, O. ; Kudriakov, S. ; Hadjadj, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-24ab4f89461670a380866ee63e72dc1e78fd2675f4763e07472bf628a147047e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Conservation laws</topic><topic>Density</topic><topic>Diameters</topic><topic>Dispersion</topic><topic>Fluid mechanics</topic><topic>Gas density</topic><topic>Gas flow</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Topology</topic><topic>Viscosity</topic><topic>Water sprays</topic><topic>Wave direction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gai, G.</creatorcontrib><creatorcontrib>Thomine, O.</creatorcontrib><creatorcontrib>Kudriakov, S.</creatorcontrib><creatorcontrib>Hadjadj, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gai, G.</au><au>Thomine, O.</au><au>Kudriakov, S.</au><au>Hadjadj, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2020-12-25</date><risdate>2020</risdate><volume>905</volume><artnum>A24</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated against numerical simulations over a wide range of incident Mach numbers $M_s$ and particle volume fractions $\tau _{v,0}$. Two regimes of shock reflection have been identified depending on $M_s$, where the reflected pressure expansion propagates either opposite to the incident shock-wave direction for weak incident Mach numbers or along with it for strong Mach numbers. The numerical simulations reveal the presence of a particle number-density peak for $M_s > 2$ and with particle diameters of the order of ${O}(10)\ \mathrm {\mu } \textrm {m}$. The formation of the number-density peak is discussed and a necessary condition for its existence is proposed for the first time.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.748</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4847-3224</orcidid><orcidid>https://orcid.org/0000-0002-1415-0443</orcidid><orcidid>https://orcid.org/0000-0003-3489-8851</orcidid><orcidid>https://orcid.org/0000-0002-1288-9228</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-12, Vol.905, Article A24 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_04386061v1 |
source | Cambridge University Press Journals Complete |
subjects | Conservation laws Density Diameters Dispersion Fluid mechanics Gas density Gas flow JFM Papers Mathematical models Mechanics Physics Reynolds number Shock waves Simulation Topology Viscosity Water sprays Wave direction |
title | A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20formulation%20of%20a%20spray%20dispersion%20model%20for%20particle/droplet-laden%20flows%20subjected%20to%20shock%20waves&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Gai,%20G.&rft.date=2020-12-25&rft.volume=905&rft.artnum=A24&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.748&rft_dat=%3Cproquest_hal_p%3E2454639844%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454639844&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_748&rfr_iscdi=true |