Additive manufacturing of pure copper: a review and comparison of physical, microstructural, and mechanical properties of samples manufactured with Laser-Powder Bed Fusion (L-PBF), Electron Beam Melting (EBM) and Metal Fused Deposition Modelling (MFDM) technologies

Additive Manufacturing (AM) has become a relatively common material forming technology these days, just like conventional processes (such as casting or forging). It makes it possible to produce components with complex geometries, often unachievable with conventional manufacturing processes. In order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of material forming 2023-07, Vol.16 (4), Article 32
Hauptverfasser: De Terris, T., Baffie, T., Ribière, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title International journal of material forming
container_volume 16
creator De Terris, T.
Baffie, T.
Ribière, C.
description Additive Manufacturing (AM) has become a relatively common material forming technology these days, just like conventional processes (such as casting or forging). It makes it possible to produce components with complex geometries, often unachievable with conventional manufacturing processes. In order to be able to choose the most suitable AM process (among all the existing ones) for a targeted application, this study aims to compare the physical and mechanical properties of pure copper parts manufactured with four different metallic AM processes: Laser-Powder Bed Fusion using infrared (1) or green (2) laser beams, Electron Beam Melting (3) and Metal Fused Deposition Modelling (4). It has been demonstrated that the parts fabricated with the processes involving a full melting of the material present better properties from all points of view (mechanical, electrical, and thermal properties). In addition, it has been shown that even if pure copper is a challenging material in AM due to its high reflectivity under infrared laser and high thermal conductivity, it is possible to manufacture quasi-dense parts (> 99%) with mechanical, electrical, and thermal properties comparable to those of pure copper produced by conventional processes.
doi_str_mv 10.1007/s12289-023-01755-2
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_04300147v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812752805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-feb399a512d171c30cbc3f1ac3807a6dad251247468bab32089dc488f24f75833</originalsourceid><addsrcrecordid>eNp9kstu2zAQRdUiBWqk-YGuCHQTA1HLh17uzk7spoCEZNGuCZoaxQwkUSUpG_n7jqwi2ZUbEsNz7wyHE0WfGf3KKM2_ecZ5sYopFzFleZrG_H20YKuMxhlnycXrmWYfoyvvnykuwfOcJ4t3i3Vdm2COQDrVj43SYXSmfyK2IcPogGg7DOC-E0UcHA2ciOprDHaDcsbb_swdXrzRqr0hndHO-uDGyWUKTHAH-qD6CSCDs2gWDPhJ51U3tHh8Sww1OZlwIKXy4OJHe6rBkQ1Gd6M3mOy6jB83u-UN2bagg8PIBlRHKmjDVPP1dlMtzzkrCJgOVai9g8F6fCLSla2hbc9otbtDNmBtvW3tE5b0KfrQqNbD1b_9Mvq92_66vY_Lhx8_b9dlrEUqQtzAXqxWKmW8ZjnTguq9Fg1TWhQ0V1mtao53SZ5kxV7tBafFqtZJUTQ8afK0EOIyWs6-B9XKwZlOuRdplZH361JqUJImglKW5EeG7JeZxc79GcEH-WxH12N5kheM5ykvaIoUn6mp-95B82rLqJwmRM4TInFC5HlCJEeRmEV-mD4c3Jv1f1R_ARpMv9s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812752805</pqid></control><display><type>article</type><title>Additive manufacturing of pure copper: a review and comparison of physical, microstructural, and mechanical properties of samples manufactured with Laser-Powder Bed Fusion (L-PBF), Electron Beam Melting (EBM) and Metal Fused Deposition Modelling (MFDM) technologies</title><source>SpringerLink Journals</source><creator>De Terris, T. ; Baffie, T. ; Ribière, C.</creator><creatorcontrib>De Terris, T. ; Baffie, T. ; Ribière, C.</creatorcontrib><description>Additive Manufacturing (AM) has become a relatively common material forming technology these days, just like conventional processes (such as casting or forging). It makes it possible to produce components with complex geometries, often unachievable with conventional manufacturing processes. In order to be able to choose the most suitable AM process (among all the existing ones) for a targeted application, this study aims to compare the physical and mechanical properties of pure copper parts manufactured with four different metallic AM processes: Laser-Powder Bed Fusion using infrared (1) or green (2) laser beams, Electron Beam Melting (3) and Metal Fused Deposition Modelling (4). It has been demonstrated that the parts fabricated with the processes involving a full melting of the material present better properties from all points of view (mechanical, electrical, and thermal properties). In addition, it has been shown that even if pure copper is a challenging material in AM due to its high reflectivity under infrared laser and high thermal conductivity, it is possible to manufacture quasi-dense parts (&gt; 99%) with mechanical, electrical, and thermal properties comparable to those of pure copper produced by conventional processes.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-023-01755-2</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Additive manufacturing ; Beds (process engineering) ; CAE) and Design ; Chemical Sciences ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Control ; Copper ; Deposition ; Dynamical Systems ; Electron beam melting ; Engineering ; Forging ; Fused deposition modeling ; Infrared lasers ; Laser beams ; Lasers ; Machines ; Manufacturing ; Material chemistry ; Materials Science ; Mechanical Engineering ; Mechanical properties ; Original Research ; Physical properties ; Powder beds ; Processes ; Thermal conductivity ; Thermodynamic properties ; Vibration</subject><ispartof>International journal of material forming, 2023-07, Vol.16 (4), Article 32</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-feb399a512d171c30cbc3f1ac3807a6dad251247468bab32089dc488f24f75833</citedby><cites>FETCH-LOGICAL-c353t-feb399a512d171c30cbc3f1ac3807a6dad251247468bab32089dc488f24f75833</cites><orcidid>0000-0002-6414-8106 ; 0000-0001-9870-3852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12289-023-01755-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12289-023-01755-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04300147$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>De Terris, T.</creatorcontrib><creatorcontrib>Baffie, T.</creatorcontrib><creatorcontrib>Ribière, C.</creatorcontrib><title>Additive manufacturing of pure copper: a review and comparison of physical, microstructural, and mechanical properties of samples manufactured with Laser-Powder Bed Fusion (L-PBF), Electron Beam Melting (EBM) and Metal Fused Deposition Modelling (MFDM) technologies</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>Additive Manufacturing (AM) has become a relatively common material forming technology these days, just like conventional processes (such as casting or forging). It makes it possible to produce components with complex geometries, often unachievable with conventional manufacturing processes. In order to be able to choose the most suitable AM process (among all the existing ones) for a targeted application, this study aims to compare the physical and mechanical properties of pure copper parts manufactured with four different metallic AM processes: Laser-Powder Bed Fusion using infrared (1) or green (2) laser beams, Electron Beam Melting (3) and Metal Fused Deposition Modelling (4). It has been demonstrated that the parts fabricated with the processes involving a full melting of the material present better properties from all points of view (mechanical, electrical, and thermal properties). In addition, it has been shown that even if pure copper is a challenging material in AM due to its high reflectivity under infrared laser and high thermal conductivity, it is possible to manufacture quasi-dense parts (&gt; 99%) with mechanical, electrical, and thermal properties comparable to those of pure copper produced by conventional processes.</description><subject>Additive manufacturing</subject><subject>Beds (process engineering)</subject><subject>CAE) and Design</subject><subject>Chemical Sciences</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Copper</subject><subject>Deposition</subject><subject>Dynamical Systems</subject><subject>Electron beam melting</subject><subject>Engineering</subject><subject>Forging</subject><subject>Fused deposition modeling</subject><subject>Infrared lasers</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Original Research</subject><subject>Physical properties</subject><subject>Powder beds</subject><subject>Processes</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Vibration</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kstu2zAQRdUiBWqk-YGuCHQTA1HLh17uzk7spoCEZNGuCZoaxQwkUSUpG_n7jqwi2ZUbEsNz7wyHE0WfGf3KKM2_ecZ5sYopFzFleZrG_H20YKuMxhlnycXrmWYfoyvvnykuwfOcJ4t3i3Vdm2COQDrVj43SYXSmfyK2IcPogGg7DOC-E0UcHA2ciOprDHaDcsbb_swdXrzRqr0hndHO-uDGyWUKTHAH-qD6CSCDs2gWDPhJ51U3tHh8Sww1OZlwIKXy4OJHe6rBkQ1Gd6M3mOy6jB83u-UN2bagg8PIBlRHKmjDVPP1dlMtzzkrCJgOVai9g8F6fCLSla2hbc9otbtDNmBtvW3tE5b0KfrQqNbD1b_9Mvq92_66vY_Lhx8_b9dlrEUqQtzAXqxWKmW8ZjnTguq9Fg1TWhQ0V1mtao53SZ5kxV7tBafFqtZJUTQ8afK0EOIyWs6-B9XKwZlOuRdplZH361JqUJImglKW5EeG7JeZxc79GcEH-WxH12N5kheM5ykvaIoUn6mp-95B82rLqJwmRM4TInFC5HlCJEeRmEV-mD4c3Jv1f1R_ARpMv9s</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>De Terris, T.</creator><creator>Baffie, T.</creator><creator>Ribière, C.</creator><general>Springer Paris</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6414-8106</orcidid><orcidid>https://orcid.org/0000-0001-9870-3852</orcidid></search><sort><creationdate>20230701</creationdate><title>Additive manufacturing of pure copper: a review and comparison of physical, microstructural, and mechanical properties of samples manufactured with Laser-Powder Bed Fusion (L-PBF), Electron Beam Melting (EBM) and Metal Fused Deposition Modelling (MFDM) technologies</title><author>De Terris, T. ; Baffie, T. ; Ribière, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-feb399a512d171c30cbc3f1ac3807a6dad251247468bab32089dc488f24f75833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additive manufacturing</topic><topic>Beds (process engineering)</topic><topic>CAE) and Design</topic><topic>Chemical Sciences</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Copper</topic><topic>Deposition</topic><topic>Dynamical Systems</topic><topic>Electron beam melting</topic><topic>Engineering</topic><topic>Forging</topic><topic>Fused deposition modeling</topic><topic>Infrared lasers</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Original Research</topic><topic>Physical properties</topic><topic>Powder beds</topic><topic>Processes</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Terris, T.</creatorcontrib><creatorcontrib>Baffie, T.</creatorcontrib><creatorcontrib>Ribière, C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Terris, T.</au><au>Baffie, T.</au><au>Ribière, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive manufacturing of pure copper: a review and comparison of physical, microstructural, and mechanical properties of samples manufactured with Laser-Powder Bed Fusion (L-PBF), Electron Beam Melting (EBM) and Metal Fused Deposition Modelling (MFDM) technologies</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><artnum>32</artnum><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>Additive Manufacturing (AM) has become a relatively common material forming technology these days, just like conventional processes (such as casting or forging). It makes it possible to produce components with complex geometries, often unachievable with conventional manufacturing processes. In order to be able to choose the most suitable AM process (among all the existing ones) for a targeted application, this study aims to compare the physical and mechanical properties of pure copper parts manufactured with four different metallic AM processes: Laser-Powder Bed Fusion using infrared (1) or green (2) laser beams, Electron Beam Melting (3) and Metal Fused Deposition Modelling (4). It has been demonstrated that the parts fabricated with the processes involving a full melting of the material present better properties from all points of view (mechanical, electrical, and thermal properties). In addition, it has been shown that even if pure copper is a challenging material in AM due to its high reflectivity under infrared laser and high thermal conductivity, it is possible to manufacture quasi-dense parts (&gt; 99%) with mechanical, electrical, and thermal properties comparable to those of pure copper produced by conventional processes.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-023-01755-2</doi><orcidid>https://orcid.org/0000-0002-6414-8106</orcidid><orcidid>https://orcid.org/0000-0001-9870-3852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1960-6206
ispartof International journal of material forming, 2023-07, Vol.16 (4), Article 32
issn 1960-6206
1960-6214
language eng
recordid cdi_hal_primary_oai_HAL_cea_04300147v1
source SpringerLink Journals
subjects Additive manufacturing
Beds (process engineering)
CAE) and Design
Chemical Sciences
Computational Intelligence
Computer-Aided Engineering (CAD
Control
Copper
Deposition
Dynamical Systems
Electron beam melting
Engineering
Forging
Fused deposition modeling
Infrared lasers
Laser beams
Lasers
Machines
Manufacturing
Material chemistry
Materials Science
Mechanical Engineering
Mechanical properties
Original Research
Physical properties
Powder beds
Processes
Thermal conductivity
Thermodynamic properties
Vibration
title Additive manufacturing of pure copper: a review and comparison of physical, microstructural, and mechanical properties of samples manufactured with Laser-Powder Bed Fusion (L-PBF), Electron Beam Melting (EBM) and Metal Fused Deposition Modelling (MFDM) technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20manufacturing%20of%20pure%20copper:%20a%20review%20and%20comparison%20of%20physical,%20microstructural,%20and%20mechanical%20properties%20of%20samples%20manufactured%20with%20Laser-Powder%20Bed%20Fusion%20(L-PBF),%20Electron%20Beam%20Melting%20(EBM)%20and%20Metal%20Fused%20Deposition%20Modelling%20(MFDM)%20technologies&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=De%20Terris,%20T.&rft.date=2023-07-01&rft.volume=16&rft.issue=4&rft.artnum=32&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-023-01755-2&rft_dat=%3Cproquest_hal_p%3E2812752805%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812752805&rft_id=info:pmid/&rfr_iscdi=true