Atomistic approach to simulate kink migration and kink-pair formation in silicon: The kinetic activation-relaxation technique
The energy conversion efficiency of solar cells based on multicrystalline silicon is greatly deteriorated by dislocations. However, an in-depth understanding on the dislocation motion dynamics down to atomic scale is still lacking. In this paper, we propose a novel atomistic approach to simulate the...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-10, Vol.100 (15), Article 155305 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Physical review. B |
container_volume | 100 |
creator | Eliassen, Simen N. H. Friis, Jesper Ringdalen, Inga G. Mousseau, Normand Trochet, Mickaël Li, Yanjun |
description | The energy conversion efficiency of solar cells based on multicrystalline silicon is greatly deteriorated by dislocations. However, an in-depth understanding on the dislocation motion dynamics down to atomic scale is still lacking. In this paper, we propose a novel atomistic approach to simulate the kink migration and kink-pair formation which govern dislocation motion in silicon, namely the kinetic activation-relax technique (k-ART). With this method, long timescale events can be simulated and complex energy landscapes can be explored. Four mechanisms for kink migration are observed, with total activation energy of 0.16, 0.25, 0.32, and 0.25 eV. New nontrivial kink structures that participate in kink migration are identified due to the open-ended search algorithm for saddle points in k-ART. In addition, a new pathway for kink-pair formation, with a minimum activation energy of 1.11 eV is discovered. The effect of shear stress on kink migration is also investigated. It shows that shear stress shifts the energy barriers of available events to lower energies, resulting in a change of the preferred kink-migration mechanism and a reduction of kink-pair formation energy. |
doi_str_mv | 10.1103/PhysRevB.100.155305 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_03746198v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315944085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-d4b372c87ca20f5dfe6df0a9b7125b2028f921c2e3b355f3b5a9bf621ebb65533</originalsourceid><addsrcrecordid>eNo9kc1OwzAQhCMEEhX0CbhE4sQhxT9xEnMrFVCkSiBUzpbj2MRtEgfbreiBd8ck0NOuZr8drXai6AqCGYQA377WB_cm9_czCIJCCAbkJJqgNKMJpRk9PfYEnEdT5zYAAJgBmgM6ib7n3rTaeS1i3vfWcFHH3sROt7uGexlvdbeNW_1hudemi3lXDVLSc21jZWw76roLK40WpruL1_WwJgdP4fV-QBIrG_410l6KutOfO3kZnSneODn9qxfR--PDerFMVi9Pz4v5KhGYZD6p0hLnSBS54AgoUimZVQpwWuYQkRIBVCiKoEASl5gQhUsSZipDUJZlFh6CL6Kb0bfmDeutbrk9MMM1W85XTEjOAM7TDNJiDwN7PbLhG-FE59nG7GwXzmMIQ0LTFBQkUHikhDXOWamOthCw31jYfyxBCMoQC_4BxpOD6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315944085</pqid></control><display><type>article</type><title>Atomistic approach to simulate kink migration and kink-pair formation in silicon: The kinetic activation-relaxation technique</title><source>American Physical Society Journals</source><creator>Eliassen, Simen N. H. ; Friis, Jesper ; Ringdalen, Inga G. ; Mousseau, Normand ; Trochet, Mickaël ; Li, Yanjun</creator><creatorcontrib>Eliassen, Simen N. H. ; Friis, Jesper ; Ringdalen, Inga G. ; Mousseau, Normand ; Trochet, Mickaël ; Li, Yanjun</creatorcontrib><description>The energy conversion efficiency of solar cells based on multicrystalline silicon is greatly deteriorated by dislocations. However, an in-depth understanding on the dislocation motion dynamics down to atomic scale is still lacking. In this paper, we propose a novel atomistic approach to simulate the kink migration and kink-pair formation which govern dislocation motion in silicon, namely the kinetic activation-relax technique (k-ART). With this method, long timescale events can be simulated and complex energy landscapes can be explored. Four mechanisms for kink migration are observed, with total activation energy of 0.16, 0.25, 0.32, and 0.25 eV. New nontrivial kink structures that participate in kink migration are identified due to the open-ended search algorithm for saddle points in k-ART. In addition, a new pathway for kink-pair formation, with a minimum activation energy of 1.11 eV is discovered. The effect of shear stress on kink migration is also investigated. It shows that shear stress shifts the energy barriers of available events to lower energies, resulting in a change of the preferred kink-migration mechanism and a reduction of kink-pair formation energy.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.155305</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Activation energy ; Computer simulation ; Condensed Matter ; Energy ; Energy conversion efficiency ; Free energy ; Heat of formation ; Materials Science ; Photovoltaic cells ; Physics ; Saddle points ; Search algorithms ; Shear stress ; Silicon ; Solar cells</subject><ispartof>Physical review. B, 2019-10, Vol.100 (15), Article 155305</ispartof><rights>Copyright American Physical Society Oct 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-d4b372c87ca20f5dfe6df0a9b7125b2028f921c2e3b355f3b5a9bf621ebb65533</citedby><cites>FETCH-LOGICAL-c356t-d4b372c87ca20f5dfe6df0a9b7125b2028f921c2e3b355f3b5a9bf621ebb65533</cites><orcidid>0000-0001-6022-9550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-03746198$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eliassen, Simen N. H.</creatorcontrib><creatorcontrib>Friis, Jesper</creatorcontrib><creatorcontrib>Ringdalen, Inga G.</creatorcontrib><creatorcontrib>Mousseau, Normand</creatorcontrib><creatorcontrib>Trochet, Mickaël</creatorcontrib><creatorcontrib>Li, Yanjun</creatorcontrib><title>Atomistic approach to simulate kink migration and kink-pair formation in silicon: The kinetic activation-relaxation technique</title><title>Physical review. B</title><description>The energy conversion efficiency of solar cells based on multicrystalline silicon is greatly deteriorated by dislocations. However, an in-depth understanding on the dislocation motion dynamics down to atomic scale is still lacking. In this paper, we propose a novel atomistic approach to simulate the kink migration and kink-pair formation which govern dislocation motion in silicon, namely the kinetic activation-relax technique (k-ART). With this method, long timescale events can be simulated and complex energy landscapes can be explored. Four mechanisms for kink migration are observed, with total activation energy of 0.16, 0.25, 0.32, and 0.25 eV. New nontrivial kink structures that participate in kink migration are identified due to the open-ended search algorithm for saddle points in k-ART. In addition, a new pathway for kink-pair formation, with a minimum activation energy of 1.11 eV is discovered. The effect of shear stress on kink migration is also investigated. It shows that shear stress shifts the energy barriers of available events to lower energies, resulting in a change of the preferred kink-migration mechanism and a reduction of kink-pair formation energy.</description><subject>Activation energy</subject><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Materials Science</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Saddle points</subject><subject>Search algorithms</subject><subject>Shear stress</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kc1OwzAQhCMEEhX0CbhE4sQhxT9xEnMrFVCkSiBUzpbj2MRtEgfbreiBd8ck0NOuZr8drXai6AqCGYQA377WB_cm9_czCIJCCAbkJJqgNKMJpRk9PfYEnEdT5zYAAJgBmgM6ib7n3rTaeS1i3vfWcFHH3sROt7uGexlvdbeNW_1hudemi3lXDVLSc21jZWw76roLK40WpruL1_WwJgdP4fV-QBIrG_410l6KutOfO3kZnSneODn9qxfR--PDerFMVi9Pz4v5KhGYZD6p0hLnSBS54AgoUimZVQpwWuYQkRIBVCiKoEASl5gQhUsSZipDUJZlFh6CL6Kb0bfmDeutbrk9MMM1W85XTEjOAM7TDNJiDwN7PbLhG-FE59nG7GwXzmMIQ0LTFBQkUHikhDXOWamOthCw31jYfyxBCMoQC_4BxpOD6w</recordid><startdate>20191021</startdate><enddate>20191021</enddate><creator>Eliassen, Simen N. H.</creator><creator>Friis, Jesper</creator><creator>Ringdalen, Inga G.</creator><creator>Mousseau, Normand</creator><creator>Trochet, Mickaël</creator><creator>Li, Yanjun</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6022-9550</orcidid></search><sort><creationdate>20191021</creationdate><title>Atomistic approach to simulate kink migration and kink-pair formation in silicon: The kinetic activation-relaxation technique</title><author>Eliassen, Simen N. H. ; Friis, Jesper ; Ringdalen, Inga G. ; Mousseau, Normand ; Trochet, Mickaël ; Li, Yanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-d4b372c87ca20f5dfe6df0a9b7125b2028f921c2e3b355f3b5a9bf621ebb65533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation energy</topic><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Materials Science</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Saddle points</topic><topic>Search algorithms</topic><topic>Shear stress</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eliassen, Simen N. H.</creatorcontrib><creatorcontrib>Friis, Jesper</creatorcontrib><creatorcontrib>Ringdalen, Inga G.</creatorcontrib><creatorcontrib>Mousseau, Normand</creatorcontrib><creatorcontrib>Trochet, Mickaël</creatorcontrib><creatorcontrib>Li, Yanjun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eliassen, Simen N. H.</au><au>Friis, Jesper</au><au>Ringdalen, Inga G.</au><au>Mousseau, Normand</au><au>Trochet, Mickaël</au><au>Li, Yanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic approach to simulate kink migration and kink-pair formation in silicon: The kinetic activation-relaxation technique</atitle><jtitle>Physical review. B</jtitle><date>2019-10-21</date><risdate>2019</risdate><volume>100</volume><issue>15</issue><artnum>155305</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The energy conversion efficiency of solar cells based on multicrystalline silicon is greatly deteriorated by dislocations. However, an in-depth understanding on the dislocation motion dynamics down to atomic scale is still lacking. In this paper, we propose a novel atomistic approach to simulate the kink migration and kink-pair formation which govern dislocation motion in silicon, namely the kinetic activation-relax technique (k-ART). With this method, long timescale events can be simulated and complex energy landscapes can be explored. Four mechanisms for kink migration are observed, with total activation energy of 0.16, 0.25, 0.32, and 0.25 eV. New nontrivial kink structures that participate in kink migration are identified due to the open-ended search algorithm for saddle points in k-ART. In addition, a new pathway for kink-pair formation, with a minimum activation energy of 1.11 eV is discovered. The effect of shear stress on kink migration is also investigated. It shows that shear stress shifts the energy barriers of available events to lower energies, resulting in a change of the preferred kink-migration mechanism and a reduction of kink-pair formation energy.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.155305</doi><orcidid>https://orcid.org/0000-0001-6022-9550</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2019-10, Vol.100 (15), Article 155305 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_03746198v1 |
source | American Physical Society Journals |
subjects | Activation energy Computer simulation Condensed Matter Energy Energy conversion efficiency Free energy Heat of formation Materials Science Photovoltaic cells Physics Saddle points Search algorithms Shear stress Silicon Solar cells |
title | Atomistic approach to simulate kink migration and kink-pair formation in silicon: The kinetic activation-relaxation technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20approach%20to%20simulate%20kink%20migration%20and%20kink-pair%20formation%20in%20silicon:%20The%20kinetic%20activation-relaxation%20technique&rft.jtitle=Physical%20review.%20B&rft.au=Eliassen,%20Simen%20N.%20H.&rft.date=2019-10-21&rft.volume=100&rft.issue=15&rft.artnum=155305&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.155305&rft_dat=%3Cproquest_hal_p%3E2315944085%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315944085&rft_id=info:pmid/&rfr_iscdi=true |