Irradiation in BCC materials: Defect-induced changes of the effective dislocation mobility and their relation with the dose-dependent fracture response

The mechanical response of nuclear structural materials and their lifetime are strongly affected by radiation effects. This influence is of concern, especially in body centered cubic materials, which exhibiting a well-defined ductile to brittle transition. The ductile to brittle transition temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in nuclear energy (New series) 2021-11, Vol.141 (141), p.103926, Article 103926
Hauptverfasser: Singh, Kulbir, Robertson, C., Bhaduri, A.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 141
container_start_page 103926
container_title Progress in nuclear energy (New series)
container_volume 141
creator Singh, Kulbir
Robertson, C.
Bhaduri, A.K.
description The mechanical response of nuclear structural materials and their lifetime are strongly affected by radiation effects. This influence is of concern, especially in body centered cubic materials, which exhibiting a well-defined ductile to brittle transition. The ductile to brittle transition temperature itself is dose-dependent and may rise to or above the room temperature. In the current work, irradiation effect is modeled to predict the dose-dependent changes of the effective dislocation mobility, represented by the Defect Induced Apparent Temperature shift (ΔDIAT). Mainly dislocation based crystal plasticity material model is used rather than a phenomenological approach. This material model accounts for both thermally activated dislocation mobility and dislocation mobility in an athermal regime of body centered cubic materials. The defect-induced evolution of ΔDIAT in turn analyzed and their relations with the fracture response are highlighted and discussed. •Temperature-dependent dislocation mobility in BCC materials.•Length dependent screw dislocation velocity and obstacle strengthening.•Dislocation-irradiation defect interaction to estimate irradiation hardening.•Suppression of secondary slip system participation due to irradiation.•Defect induced apparent temperature shift estimation based on the dislocation velocity field.
doi_str_mv 10.1016/j.pnucene.2021.103926
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_03601054v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0149197021002869</els_id><sourcerecordid>S0149197021002869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-c675a210b8e72fd5e6ee7a273663fc1d9861de3516e0f8ad996fbd5cddca96a03</originalsourceid><addsrcrecordid>eNqFkM1OAjEQx_egiYg-gkmvHhbbXbbLejGIH5CQeNFzU9qpDFla0hYMT-Lr2nWJV0-TzP8jM78su2F0xCjjd5vRzu4VWBgVtGBpVzYFP8sGlI2bnDU1vcguQ9hQympWVYPse-G91CgjOkvQksfZjGxlBI-yDffkCQyomKPVqVQTtZb2EwJxhsQ1EDCdigcgGkPrVN-ydStsMR6JtLqzoSce2l77wrj-jWoXINewA6vBRmK8VHHvITnDztkAV9m5SRfA9WkOs4-X5_fZPF--vS5m02WuyobGXPG6kgWjqwnUhdEVcIBaFnXJeWkU082EMw1lxThQM5G6abhZ6UpprWTDJS2H2W3fu5at2HncSn8UTqKYT5dCgRS05JTRanxgyVv1XuVdCB7MX4BR0dEXG3GiLzr6oqefcg99DtIjBwQvgkKwCSj6xE9oh_80_AB3mpYN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Irradiation in BCC materials: Defect-induced changes of the effective dislocation mobility and their relation with the dose-dependent fracture response</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Singh, Kulbir ; Robertson, C. ; Bhaduri, A.K.</creator><creatorcontrib>Singh, Kulbir ; Robertson, C. ; Bhaduri, A.K.</creatorcontrib><description>The mechanical response of nuclear structural materials and their lifetime are strongly affected by radiation effects. This influence is of concern, especially in body centered cubic materials, which exhibiting a well-defined ductile to brittle transition. The ductile to brittle transition temperature itself is dose-dependent and may rise to or above the room temperature. In the current work, irradiation effect is modeled to predict the dose-dependent changes of the effective dislocation mobility, represented by the Defect Induced Apparent Temperature shift (ΔDIAT). Mainly dislocation based crystal plasticity material model is used rather than a phenomenological approach. This material model accounts for both thermally activated dislocation mobility and dislocation mobility in an athermal regime of body centered cubic materials. The defect-induced evolution of ΔDIAT in turn analyzed and their relations with the fracture response are highlighted and discussed. •Temperature-dependent dislocation mobility in BCC materials.•Length dependent screw dislocation velocity and obstacle strengthening.•Dislocation-irradiation defect interaction to estimate irradiation hardening.•Suppression of secondary slip system participation due to irradiation.•Defect induced apparent temperature shift estimation based on the dislocation velocity field.</description><identifier>ISSN: 0149-1970</identifier><identifier>DOI: 10.1016/j.pnucene.2021.103926</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Crystal plasticity ; Dislocation mobility ; Irradiation hardening ; Material chemistry ; Strain localization</subject><ispartof>Progress in nuclear energy (New series), 2021-11, Vol.141 (141), p.103926, Article 103926</ispartof><rights>2021 Elsevier Ltd</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-c675a210b8e72fd5e6ee7a273663fc1d9861de3516e0f8ad996fbd5cddca96a03</citedby><cites>FETCH-LOGICAL-c390t-c675a210b8e72fd5e6ee7a273663fc1d9861de3516e0f8ad996fbd5cddca96a03</cites><orcidid>0000-0002-4916-8766 ; 0000-0002-0026-0545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0149197021002869$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-03601054$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Kulbir</creatorcontrib><creatorcontrib>Robertson, C.</creatorcontrib><creatorcontrib>Bhaduri, A.K.</creatorcontrib><title>Irradiation in BCC materials: Defect-induced changes of the effective dislocation mobility and their relation with the dose-dependent fracture response</title><title>Progress in nuclear energy (New series)</title><description>The mechanical response of nuclear structural materials and their lifetime are strongly affected by radiation effects. This influence is of concern, especially in body centered cubic materials, which exhibiting a well-defined ductile to brittle transition. The ductile to brittle transition temperature itself is dose-dependent and may rise to or above the room temperature. In the current work, irradiation effect is modeled to predict the dose-dependent changes of the effective dislocation mobility, represented by the Defect Induced Apparent Temperature shift (ΔDIAT). Mainly dislocation based crystal plasticity material model is used rather than a phenomenological approach. This material model accounts for both thermally activated dislocation mobility and dislocation mobility in an athermal regime of body centered cubic materials. The defect-induced evolution of ΔDIAT in turn analyzed and their relations with the fracture response are highlighted and discussed. •Temperature-dependent dislocation mobility in BCC materials.•Length dependent screw dislocation velocity and obstacle strengthening.•Dislocation-irradiation defect interaction to estimate irradiation hardening.•Suppression of secondary slip system participation due to irradiation.•Defect induced apparent temperature shift estimation based on the dislocation velocity field.</description><subject>Chemical Sciences</subject><subject>Crystal plasticity</subject><subject>Dislocation mobility</subject><subject>Irradiation hardening</subject><subject>Material chemistry</subject><subject>Strain localization</subject><issn>0149-1970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEQx_egiYg-gkmvHhbbXbbLejGIH5CQeNFzU9qpDFla0hYMT-Lr2nWJV0-TzP8jM78su2F0xCjjd5vRzu4VWBgVtGBpVzYFP8sGlI2bnDU1vcguQ9hQympWVYPse-G91CgjOkvQksfZjGxlBI-yDffkCQyomKPVqVQTtZb2EwJxhsQ1EDCdigcgGkPrVN-ydStsMR6JtLqzoSce2l77wrj-jWoXINewA6vBRmK8VHHvITnDztkAV9m5SRfA9WkOs4-X5_fZPF--vS5m02WuyobGXPG6kgWjqwnUhdEVcIBaFnXJeWkU082EMw1lxThQM5G6abhZ6UpprWTDJS2H2W3fu5at2HncSn8UTqKYT5dCgRS05JTRanxgyVv1XuVdCB7MX4BR0dEXG3GiLzr6oqefcg99DtIjBwQvgkKwCSj6xE9oh_80_AB3mpYN</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Singh, Kulbir</creator><creator>Robertson, C.</creator><creator>Bhaduri, A.K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4916-8766</orcidid><orcidid>https://orcid.org/0000-0002-0026-0545</orcidid></search><sort><creationdate>20211101</creationdate><title>Irradiation in BCC materials: Defect-induced changes of the effective dislocation mobility and their relation with the dose-dependent fracture response</title><author>Singh, Kulbir ; Robertson, C. ; Bhaduri, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-c675a210b8e72fd5e6ee7a273663fc1d9861de3516e0f8ad996fbd5cddca96a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>Crystal plasticity</topic><topic>Dislocation mobility</topic><topic>Irradiation hardening</topic><topic>Material chemistry</topic><topic>Strain localization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Kulbir</creatorcontrib><creatorcontrib>Robertson, C.</creatorcontrib><creatorcontrib>Bhaduri, A.K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Progress in nuclear energy (New series)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Kulbir</au><au>Robertson, C.</au><au>Bhaduri, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irradiation in BCC materials: Defect-induced changes of the effective dislocation mobility and their relation with the dose-dependent fracture response</atitle><jtitle>Progress in nuclear energy (New series)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>141</volume><issue>141</issue><spage>103926</spage><pages>103926-</pages><artnum>103926</artnum><issn>0149-1970</issn><abstract>The mechanical response of nuclear structural materials and their lifetime are strongly affected by radiation effects. This influence is of concern, especially in body centered cubic materials, which exhibiting a well-defined ductile to brittle transition. The ductile to brittle transition temperature itself is dose-dependent and may rise to or above the room temperature. In the current work, irradiation effect is modeled to predict the dose-dependent changes of the effective dislocation mobility, represented by the Defect Induced Apparent Temperature shift (ΔDIAT). Mainly dislocation based crystal plasticity material model is used rather than a phenomenological approach. This material model accounts for both thermally activated dislocation mobility and dislocation mobility in an athermal regime of body centered cubic materials. The defect-induced evolution of ΔDIAT in turn analyzed and their relations with the fracture response are highlighted and discussed. •Temperature-dependent dislocation mobility in BCC materials.•Length dependent screw dislocation velocity and obstacle strengthening.•Dislocation-irradiation defect interaction to estimate irradiation hardening.•Suppression of secondary slip system participation due to irradiation.•Defect induced apparent temperature shift estimation based on the dislocation velocity field.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.pnucene.2021.103926</doi><orcidid>https://orcid.org/0000-0002-4916-8766</orcidid><orcidid>https://orcid.org/0000-0002-0026-0545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0149-1970
ispartof Progress in nuclear energy (New series), 2021-11, Vol.141 (141), p.103926, Article 103926
issn 0149-1970
language eng
recordid cdi_hal_primary_oai_HAL_cea_03601054v1
source Elsevier ScienceDirect Journals Complete
subjects Chemical Sciences
Crystal plasticity
Dislocation mobility
Irradiation hardening
Material chemistry
Strain localization
title Irradiation in BCC materials: Defect-induced changes of the effective dislocation mobility and their relation with the dose-dependent fracture response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irradiation%20in%20BCC%20materials:%20Defect-induced%20changes%20of%20the%20effective%20dislocation%20mobility%20and%20their%20relation%20with%20the%20dose-dependent%20fracture%20response&rft.jtitle=Progress%20in%20nuclear%20energy%20(New%20series)&rft.au=Singh,%20Kulbir&rft.date=2021-11-01&rft.volume=141&rft.issue=141&rft.spage=103926&rft.pages=103926-&rft.artnum=103926&rft.issn=0149-1970&rft_id=info:doi/10.1016/j.pnucene.2021.103926&rft_dat=%3Celsevier_hal_p%3ES0149197021002869%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0149197021002869&rfr_iscdi=true