Perturbing isoradial triangulations

We consider an infinite planar Delaunay graph \mathbf{G}_{\epsilon} which is obtained by locally deforming the coordinate embedding of a general isoradial graph \mathbf{G}_{\mathrm{cr}} , with respect to a real deformation parameter \epsilon . Using Kenyon’s exact and asymptotic results for the crit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions physics and their interactions, 2024-03, Vol.11 (4), p.715-859
Hauptverfasser: David, François, Scott, Jeanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an infinite planar Delaunay graph \mathbf{G}_{\epsilon} which is obtained by locally deforming the coordinate embedding of a general isoradial graph \mathbf{G}_{\mathrm{cr}} , with respect to a real deformation parameter \epsilon . Using Kenyon’s exact and asymptotic results for the critical Green’s function on an isoradial graph, we calculate the leading asymptotics of the first- and second-order terms in the perturbative expansion of the log-determinant of the Laplace–Beltrami operator \Delta(\epsilon) , the David–Eynard Kähler operator \mathcal{D}(\epsilon) , and the conformal Laplacian  {\underline{\boldsymbol{\Delta}}}(\epsilon) on the deformed Delaunay graph \mathbf{G}_{\epsilon} . We show that the scaling limits of the second-order bi-local term for both the Laplace–Beltrami and David–Eynard Kähler operators exist and coincide, with a shared value independent of the choice of the initial isoradial graph \mathbf{G}_{\mathrm{cr}} . Our results allow us to define a discrete analog of the stress-energy tensor for each of the three operators. Furthermore, we can identify a central charge ( c=-2 ) in the case of both the Laplace–Beltrami and David–Eynard Kähler operators. While the scaling limit is consistent with the stress-energy tensor and the value of the central charge for the Gaussian free field (GFF), the discrete central charge value of  c=-2 for the David–Eynard Kähler operator is, however, at odds with the value of  c=-26 expected by Polyakov’s theory of 2D quantum gravity; moreover, there are problems with convergence of the scaling limit of the discrete stress-energy tensor for the David–Eynard Kähler operator. The second-order bi-local term for the conformal Laplacian involves anomalous terms corresponding to the creation of discrete curvature dipoles in the deformed Delaunay graph \mathbf{G}_{\epsilon} ; we examine the difficulties in defining a convergent scaling limit in this case. Connections with some discrete statistical models at criticality are explored.
ISSN:2308-5827
2308-5835
DOI:10.4171/aihpd/178