Creep Properties of 9Cr and 14Cr ODS Tubes Tested by Inner Gas Pressure

Oxide-dispersion strengthened steels are promising materials for extreme service conditions including nuclear reactors core. In service conditions, nuclear fuel claddings are exposed to the fission gas pressure at temperatures about 700 °C. This paper presents novel results on ODS creep properties f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2021-08, Vol.52 (8), p.3541-3552
Hauptverfasser: Sornin, D., Ehrnstén, U., Mozzani, N., Rantala, J., Walter, M., Hobt, A., Aktaa, J., Oñorbe, E., Hernandez-Mayoral, M., Ulbricht, A., Gicquel, S., Frank, L., de Carlan, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3552
container_issue 8
container_start_page 3541
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 52
creator Sornin, D.
Ehrnstén, U.
Mozzani, N.
Rantala, J.
Walter, M.
Hobt, A.
Aktaa, J.
Oñorbe, E.
Hernandez-Mayoral, M.
Ulbricht, A.
Gicquel, S.
Frank, L.
de Carlan, Y.
description Oxide-dispersion strengthened steels are promising materials for extreme service conditions including nuclear reactors core. In service conditions, nuclear fuel claddings are exposed to the fission gas pressure at temperatures about 700 °C. This paper presents novel results on ODS creep properties from a round robin of inner gas pressure creep test. A gas pressure creep test, simulating fission gas loading, was designed and achieved by four different European teams. Lifetime and specific behavior of ODS steel tube are prospected. Based on a mechanical clamping achieving gas tightness, short length tubes samples are tested by different laboratories. In situ laser measurements exhibit the radial expansion of ODS steel tubes before failure. Post-mortem, geometrical characterizations are performed to determine hoop strains at failure. A consistent creep lifetime is observed by all the teams even with slightly different testing apparatus and clamping systems. Under inner gas pressure, ODS steels exhibit a typical failure by leakage associated to a very small radial expansion. This behavior results from a brutal failure (burst) without evidence of tertiary creep stage. This failure mode of ODS cladding in creep conditions is consistently observed on all samples of the study. Inner gas pressure creep tests were compared, for the first time, by four European laboratories on ODS steel tube. This technique, simulating the fission gas pressure loading, is applied on small and mechanically clamped samples. This technique shows a remarkable consistency between the different laboratories results and demonstrates to be efficient for ODS steel cladding tube qualification. The results show a correlation between the creep properties and the microstructure.
doi_str_mv 10.1007/s11661-021-06327-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_03263217v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547179393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b3cbff4da288285cc9b38dd659a8fd629b2d170816ad5b71e98e012a09f9c7753</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPAk4fq9yVt0hxH1W0wmOA8h7RJdWO2NWmF_XujFb15CPkgz_vm4yHkEuEGAeRtQBQCE2DxCM5kAkdkglnKE1QpHMcZJE8ywfgpOQthBwCouJiQeeGd6-ijbzvn-60LtK2pKjw1jaWYxmF990Q3QxlfNi70ztLyQJdN4zydmxCDLoTBu3NyUpt9cBc_95Q8P9xvikWyWs-XxWyVVFzJPil5VdZ1ag3Lc5ZnVaVKnlsrMmXy2gqmSmZRQo7C2KyU6FTuAJkBVatKyoxPyfXY-2r2uvPbN-MPujVbvZitdOWMBs6iAJQfGNmrke18-z7E5fWuHXwT19MsSyVKxRWPFBupyrcheFf_1iLoL7l6lKujXP0tN_4xJXwMhQg3L87_Vf-T-gTP_3jo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547179393</pqid></control><display><type>article</type><title>Creep Properties of 9Cr and 14Cr ODS Tubes Tested by Inner Gas Pressure</title><source>SpringerLink Journals</source><creator>Sornin, D. ; Ehrnstén, U. ; Mozzani, N. ; Rantala, J. ; Walter, M. ; Hobt, A. ; Aktaa, J. ; Oñorbe, E. ; Hernandez-Mayoral, M. ; Ulbricht, A. ; Gicquel, S. ; Frank, L. ; de Carlan, Y.</creator><creatorcontrib>Sornin, D. ; Ehrnstén, U. ; Mozzani, N. ; Rantala, J. ; Walter, M. ; Hobt, A. ; Aktaa, J. ; Oñorbe, E. ; Hernandez-Mayoral, M. ; Ulbricht, A. ; Gicquel, S. ; Frank, L. ; de Carlan, Y.</creatorcontrib><description>Oxide-dispersion strengthened steels are promising materials for extreme service conditions including nuclear reactors core. In service conditions, nuclear fuel claddings are exposed to the fission gas pressure at temperatures about 700 °C. This paper presents novel results on ODS creep properties from a round robin of inner gas pressure creep test. A gas pressure creep test, simulating fission gas loading, was designed and achieved by four different European teams. Lifetime and specific behavior of ODS steel tube are prospected. Based on a mechanical clamping achieving gas tightness, short length tubes samples are tested by different laboratories. In situ laser measurements exhibit the radial expansion of ODS steel tubes before failure. Post-mortem, geometrical characterizations are performed to determine hoop strains at failure. A consistent creep lifetime is observed by all the teams even with slightly different testing apparatus and clamping systems. Under inner gas pressure, ODS steels exhibit a typical failure by leakage associated to a very small radial expansion. This behavior results from a brutal failure (burst) without evidence of tertiary creep stage. This failure mode of ODS cladding in creep conditions is consistently observed on all samples of the study. Inner gas pressure creep tests were compared, for the first time, by four European laboratories on ODS steel tube. This technique, simulating the fission gas pressure loading, is applied on small and mechanically clamped samples. This technique shows a remarkable consistency between the different laboratories results and demonstrates to be efficient for ODS steel cladding tube qualification. The results show a correlation between the creep properties and the microstructure.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-021-06327-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Clamping ; Creep tests ; Dispersion hardening steels ; Engineering Sciences ; Failure modes ; Gas pressure ; Gas tightness ; Laboratories ; Materials and structures in mechanics ; Materials Science ; Mechanics ; Metallic Materials ; Nanotechnology ; Nuclear fuel elements ; Nuclear reactors ; Original Research Article ; Steel ; Steel tubes ; Structural Materials ; Surfaces and Interfaces ; Teams ; Test equipment ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2021-08, Vol.52 (8), p.3541-3552</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b3cbff4da288285cc9b38dd659a8fd629b2d170816ad5b71e98e012a09f9c7753</citedby><cites>FETCH-LOGICAL-c397t-b3cbff4da288285cc9b38dd659a8fd629b2d170816ad5b71e98e012a09f9c7753</cites><orcidid>0000-0002-4906-0173 ; 0000-0003-4504-7577 ; 0000-0001-8170-4365 ; 0000-0002-6022-8459 ; 0000-0002-0891-5331 ; 0000-0002-3573-1749 ; 0000-0002-6080-2844 ; 0000-0002-1200-8988 ; 0000-0002-9745-0299 ; 0000-0003-2739-6415 ; 0000-0001-8522-9004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-021-06327-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-021-06327-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-03263217$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sornin, D.</creatorcontrib><creatorcontrib>Ehrnstén, U.</creatorcontrib><creatorcontrib>Mozzani, N.</creatorcontrib><creatorcontrib>Rantala, J.</creatorcontrib><creatorcontrib>Walter, M.</creatorcontrib><creatorcontrib>Hobt, A.</creatorcontrib><creatorcontrib>Aktaa, J.</creatorcontrib><creatorcontrib>Oñorbe, E.</creatorcontrib><creatorcontrib>Hernandez-Mayoral, M.</creatorcontrib><creatorcontrib>Ulbricht, A.</creatorcontrib><creatorcontrib>Gicquel, S.</creatorcontrib><creatorcontrib>Frank, L.</creatorcontrib><creatorcontrib>de Carlan, Y.</creatorcontrib><title>Creep Properties of 9Cr and 14Cr ODS Tubes Tested by Inner Gas Pressure</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Oxide-dispersion strengthened steels are promising materials for extreme service conditions including nuclear reactors core. In service conditions, nuclear fuel claddings are exposed to the fission gas pressure at temperatures about 700 °C. This paper presents novel results on ODS creep properties from a round robin of inner gas pressure creep test. A gas pressure creep test, simulating fission gas loading, was designed and achieved by four different European teams. Lifetime and specific behavior of ODS steel tube are prospected. Based on a mechanical clamping achieving gas tightness, short length tubes samples are tested by different laboratories. In situ laser measurements exhibit the radial expansion of ODS steel tubes before failure. Post-mortem, geometrical characterizations are performed to determine hoop strains at failure. A consistent creep lifetime is observed by all the teams even with slightly different testing apparatus and clamping systems. Under inner gas pressure, ODS steels exhibit a typical failure by leakage associated to a very small radial expansion. This behavior results from a brutal failure (burst) without evidence of tertiary creep stage. This failure mode of ODS cladding in creep conditions is consistently observed on all samples of the study. Inner gas pressure creep tests were compared, for the first time, by four European laboratories on ODS steel tube. This technique, simulating the fission gas pressure loading, is applied on small and mechanically clamped samples. This technique shows a remarkable consistency between the different laboratories results and demonstrates to be efficient for ODS steel cladding tube qualification. The results show a correlation between the creep properties and the microstructure.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Clamping</subject><subject>Creep tests</subject><subject>Dispersion hardening steels</subject><subject>Engineering Sciences</subject><subject>Failure modes</subject><subject>Gas pressure</subject><subject>Gas tightness</subject><subject>Laboratories</subject><subject>Materials and structures in mechanics</subject><subject>Materials Science</subject><subject>Mechanics</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Nuclear fuel elements</subject><subject>Nuclear reactors</subject><subject>Original Research Article</subject><subject>Steel</subject><subject>Steel tubes</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Teams</subject><subject>Test equipment</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFLwzAYhoMoOKd_wFPAk4fq9yVt0hxH1W0wmOA8h7RJdWO2NWmF_XujFb15CPkgz_vm4yHkEuEGAeRtQBQCE2DxCM5kAkdkglnKE1QpHMcZJE8ywfgpOQthBwCouJiQeeGd6-ijbzvn-60LtK2pKjw1jaWYxmF990Q3QxlfNi70ztLyQJdN4zydmxCDLoTBu3NyUpt9cBc_95Q8P9xvikWyWs-XxWyVVFzJPil5VdZ1ag3Lc5ZnVaVKnlsrMmXy2gqmSmZRQo7C2KyU6FTuAJkBVatKyoxPyfXY-2r2uvPbN-MPujVbvZitdOWMBs6iAJQfGNmrke18-z7E5fWuHXwT19MsSyVKxRWPFBupyrcheFf_1iLoL7l6lKujXP0tN_4xJXwMhQg3L87_Vf-T-gTP_3jo</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Sornin, D.</creator><creator>Ehrnstén, U.</creator><creator>Mozzani, N.</creator><creator>Rantala, J.</creator><creator>Walter, M.</creator><creator>Hobt, A.</creator><creator>Aktaa, J.</creator><creator>Oñorbe, E.</creator><creator>Hernandez-Mayoral, M.</creator><creator>Ulbricht, A.</creator><creator>Gicquel, S.</creator><creator>Frank, L.</creator><creator>de Carlan, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag/ASM International</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4906-0173</orcidid><orcidid>https://orcid.org/0000-0003-4504-7577</orcidid><orcidid>https://orcid.org/0000-0001-8170-4365</orcidid><orcidid>https://orcid.org/0000-0002-6022-8459</orcidid><orcidid>https://orcid.org/0000-0002-0891-5331</orcidid><orcidid>https://orcid.org/0000-0002-3573-1749</orcidid><orcidid>https://orcid.org/0000-0002-6080-2844</orcidid><orcidid>https://orcid.org/0000-0002-1200-8988</orcidid><orcidid>https://orcid.org/0000-0002-9745-0299</orcidid><orcidid>https://orcid.org/0000-0003-2739-6415</orcidid><orcidid>https://orcid.org/0000-0001-8522-9004</orcidid></search><sort><creationdate>20210801</creationdate><title>Creep Properties of 9Cr and 14Cr ODS Tubes Tested by Inner Gas Pressure</title><author>Sornin, D. ; Ehrnstén, U. ; Mozzani, N. ; Rantala, J. ; Walter, M. ; Hobt, A. ; Aktaa, J. ; Oñorbe, E. ; Hernandez-Mayoral, M. ; Ulbricht, A. ; Gicquel, S. ; Frank, L. ; de Carlan, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b3cbff4da288285cc9b38dd659a8fd629b2d170816ad5b71e98e012a09f9c7753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Clamping</topic><topic>Creep tests</topic><topic>Dispersion hardening steels</topic><topic>Engineering Sciences</topic><topic>Failure modes</topic><topic>Gas pressure</topic><topic>Gas tightness</topic><topic>Laboratories</topic><topic>Materials and structures in mechanics</topic><topic>Materials Science</topic><topic>Mechanics</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Nuclear fuel elements</topic><topic>Nuclear reactors</topic><topic>Original Research Article</topic><topic>Steel</topic><topic>Steel tubes</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Teams</topic><topic>Test equipment</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sornin, D.</creatorcontrib><creatorcontrib>Ehrnstén, U.</creatorcontrib><creatorcontrib>Mozzani, N.</creatorcontrib><creatorcontrib>Rantala, J.</creatorcontrib><creatorcontrib>Walter, M.</creatorcontrib><creatorcontrib>Hobt, A.</creatorcontrib><creatorcontrib>Aktaa, J.</creatorcontrib><creatorcontrib>Oñorbe, E.</creatorcontrib><creatorcontrib>Hernandez-Mayoral, M.</creatorcontrib><creatorcontrib>Ulbricht, A.</creatorcontrib><creatorcontrib>Gicquel, S.</creatorcontrib><creatorcontrib>Frank, L.</creatorcontrib><creatorcontrib>de Carlan, Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sornin, D.</au><au>Ehrnstén, U.</au><au>Mozzani, N.</au><au>Rantala, J.</au><au>Walter, M.</au><au>Hobt, A.</au><au>Aktaa, J.</au><au>Oñorbe, E.</au><au>Hernandez-Mayoral, M.</au><au>Ulbricht, A.</au><au>Gicquel, S.</au><au>Frank, L.</au><au>de Carlan, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep Properties of 9Cr and 14Cr ODS Tubes Tested by Inner Gas Pressure</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>52</volume><issue>8</issue><spage>3541</spage><epage>3552</epage><pages>3541-3552</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Oxide-dispersion strengthened steels are promising materials for extreme service conditions including nuclear reactors core. In service conditions, nuclear fuel claddings are exposed to the fission gas pressure at temperatures about 700 °C. This paper presents novel results on ODS creep properties from a round robin of inner gas pressure creep test. A gas pressure creep test, simulating fission gas loading, was designed and achieved by four different European teams. Lifetime and specific behavior of ODS steel tube are prospected. Based on a mechanical clamping achieving gas tightness, short length tubes samples are tested by different laboratories. In situ laser measurements exhibit the radial expansion of ODS steel tubes before failure. Post-mortem, geometrical characterizations are performed to determine hoop strains at failure. A consistent creep lifetime is observed by all the teams even with slightly different testing apparatus and clamping systems. Under inner gas pressure, ODS steels exhibit a typical failure by leakage associated to a very small radial expansion. This behavior results from a brutal failure (burst) without evidence of tertiary creep stage. This failure mode of ODS cladding in creep conditions is consistently observed on all samples of the study. Inner gas pressure creep tests were compared, for the first time, by four European laboratories on ODS steel tube. This technique, simulating the fission gas pressure loading, is applied on small and mechanically clamped samples. This technique shows a remarkable consistency between the different laboratories results and demonstrates to be efficient for ODS steel cladding tube qualification. The results show a correlation between the creep properties and the microstructure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-021-06327-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4906-0173</orcidid><orcidid>https://orcid.org/0000-0003-4504-7577</orcidid><orcidid>https://orcid.org/0000-0001-8170-4365</orcidid><orcidid>https://orcid.org/0000-0002-6022-8459</orcidid><orcidid>https://orcid.org/0000-0002-0891-5331</orcidid><orcidid>https://orcid.org/0000-0002-3573-1749</orcidid><orcidid>https://orcid.org/0000-0002-6080-2844</orcidid><orcidid>https://orcid.org/0000-0002-1200-8988</orcidid><orcidid>https://orcid.org/0000-0002-9745-0299</orcidid><orcidid>https://orcid.org/0000-0003-2739-6415</orcidid><orcidid>https://orcid.org/0000-0001-8522-9004</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2021-08, Vol.52 (8), p.3541-3552
issn 1073-5623
1543-1940
language eng
recordid cdi_hal_primary_oai_HAL_cea_03263217v1
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Clamping
Creep tests
Dispersion hardening steels
Engineering Sciences
Failure modes
Gas pressure
Gas tightness
Laboratories
Materials and structures in mechanics
Materials Science
Mechanics
Metallic Materials
Nanotechnology
Nuclear fuel elements
Nuclear reactors
Original Research Article
Steel
Steel tubes
Structural Materials
Surfaces and Interfaces
Teams
Test equipment
Thin Films
title Creep Properties of 9Cr and 14Cr ODS Tubes Tested by Inner Gas Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20Properties%20of%209Cr%20and%2014Cr%20ODS%20Tubes%20Tested%20by%20Inner%20Gas%20Pressure&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Sornin,%20D.&rft.date=2021-08-01&rft.volume=52&rft.issue=8&rft.spage=3541&rft.epage=3552&rft.pages=3541-3552&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-021-06327-0&rft_dat=%3Cproquest_hal_p%3E2547179393%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547179393&rft_id=info:pmid/&rfr_iscdi=true