Euclid : Reconstruction of weak-lensing mass maps for non-Gaussianity studies

Weak lensing, which is the deflection of light by matter along the line of sight, has proven to be an efficient method for constraining models of structure formation and reveal the nature of dark energy. So far, most weak-lensing studies have focused on the shear field that can be measured directly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-06, Vol.638, p.A141
Hauptverfasser: Pires, S., Vandenbussche, V., Kansal, V., Bender, R., Blot, L., Bonino, D., Boucaud, A., Brinchmann, J., Capobianco, V., Carretero, J., Castellano, M., Cavuoti, S., Clédassou, R., Congedo, G., Conversi, L., Corcione, L., Dubath, F., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Grupp, F., Hormuth, F., Kermiche, S., Knabenhans, M., Kohley, R., Kubik, B., Kunz, M., Ligori, S., Lilje, P. B., Lloro, I., Maiorano, E., Marggraf, O., Massey, R., Meylan, G., Padilla, C., Paltani, S., Pasian, F., Poncet, M., Potter, D., Raison, F., Rhodes, J., Roncarelli, M., Saglia, R., Schneider, P., Secroun, A., Serrano, S., Stadel, J., Tallada Crespí, P., Tereno, I., Toledo-Moreo, R., Wang, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A141
container_title Astronomy and astrophysics (Berlin)
container_volume 638
creator Pires, S.
Vandenbussche, V.
Kansal, V.
Bender, R.
Blot, L.
Bonino, D.
Boucaud, A.
Brinchmann, J.
Capobianco, V.
Carretero, J.
Castellano, M.
Cavuoti, S.
Clédassou, R.
Congedo, G.
Conversi, L.
Corcione, L.
Dubath, F.
Fosalba, P.
Frailis, M.
Franceschi, E.
Fumana, M.
Grupp, F.
Hormuth, F.
Kermiche, S.
Knabenhans, M.
Kohley, R.
Kubik, B.
Kunz, M.
Ligori, S.
Lilje, P. B.
Lloro, I.
Maiorano, E.
Marggraf, O.
Massey, R.
Meylan, G.
Padilla, C.
Paltani, S.
Pasian, F.
Poncet, M.
Potter, D.
Raison, F.
Rhodes, J.
Roncarelli, M.
Saglia, R.
Schneider, P.
Secroun, A.
Serrano, S.
Stadel, J.
Tallada Crespí, P.
Tereno, I.
Toledo-Moreo, R.
Wang, Y.
description Weak lensing, which is the deflection of light by matter along the line of sight, has proven to be an efficient method for constraining models of structure formation and reveal the nature of dark energy. So far, most weak-lensing studies have focused on the shear field that can be measured directly from the ellipticity of background galaxies. However, within the context of forthcoming full-sky weak-lensing surveys such as Euclid , convergence maps (mass maps) offer an important advantage over shear fields in terms of cosmological exploitation. While it carry the same information, the lensing signal is more compressed in the convergence maps than in the shear field. This simplifies otherwise computationally expensive analyses, for instance, non-Gaussianity studies. However, the inversion of the non-local shear field requires accurate control of systematic effects caused by holes in the data field, field borders, shape noise, and the fact that the shear is not a direct observable (reduced shear). We present the two mass-inversion methods that are included in the official Euclid data-processing pipeline: the standard Kaiser & Squires method (KS), and a new mass-inversion method (KS+) that aims to reduce the information loss during the mass inversion. This new method is based on the KS method and includes corrections for mass-mapping systematic effects. The results of the KS+ method are compared to the original implementation of the KS method in its simplest form, using the Euclid Flagship mock galaxy catalogue. In particular, we estimate the quality of the reconstruction by comparing the two-point correlation functions and third- and fourth-order moments obtained from shear and convergence maps, and we analyse each systematic effect independently and simultaneously. We show that the KS+ method substantially reduces the errors on the two-point correlation function and moments compared to the KS method. In particular, we show that the errors introduced by the mass inversion on the two-point correlation of the convergence maps are reduced by a factor of about 5, while the errors on the third- and fourth-order moments are reduced by factors of about 2 and 10, respectively.
doi_str_mv 10.1051/0004-6361/201936865
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_02882577v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487122694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-cbfafefc8d254b8c909c840e12246b3a18479305e69a8d4c298b9cef52bb5e013</originalsourceid><addsrcrecordid>eNo9kU9LAzEQxYMoWKufwIMLnjyszf9NvBWprVARRM8hm000tU1qsqv027tLtZcZBn68mXkPgEsEbxFkaAIhpCUnHE0wRJJwwdkRGCFKcAkryo_B6ECcgrOcV_2IkSAj8DTrzNo3xV3xYk0MuU2daX0MRXTFj9Wf5dqG7MN7sdE592WbCxdTEWIo57rL2evg212R267xNp-DE6fX2V789TF4e5i93i_K5fP88X66LA0RsC1N7bSzzogGM1oLI6E0gkKLMKa8JhoJWkkCmeVSi4YaLEUtjXUM1zWzEJExuNnrfui12ia_0WmnovZqMV0qY7WCWAjMqup7YK_2rEk-tz6oEJNWCAqGVSUoIT1xvSe2KX51NrdqFbsU-gcUpqLqr-KS9hT514k5J-sOixFUQwpq8FgNHqtDCuQXCe53bA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487122694</pqid></control><display><type>article</type><title>Euclid : Reconstruction of weak-lensing mass maps for non-Gaussianity studies</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>NORA - Norwegian Open Research Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pires, S. ; Vandenbussche, V. ; Kansal, V. ; Bender, R. ; Blot, L. ; Bonino, D. ; Boucaud, A. ; Brinchmann, J. ; Capobianco, V. ; Carretero, J. ; Castellano, M. ; Cavuoti, S. ; Clédassou, R. ; Congedo, G. ; Conversi, L. ; Corcione, L. ; Dubath, F. ; Fosalba, P. ; Frailis, M. ; Franceschi, E. ; Fumana, M. ; Grupp, F. ; Hormuth, F. ; Kermiche, S. ; Knabenhans, M. ; Kohley, R. ; Kubik, B. ; Kunz, M. ; Ligori, S. ; Lilje, P. B. ; Lloro, I. ; Maiorano, E. ; Marggraf, O. ; Massey, R. ; Meylan, G. ; Padilla, C. ; Paltani, S. ; Pasian, F. ; Poncet, M. ; Potter, D. ; Raison, F. ; Rhodes, J. ; Roncarelli, M. ; Saglia, R. ; Schneider, P. ; Secroun, A. ; Serrano, S. ; Stadel, J. ; Tallada Crespí, P. ; Tereno, I. ; Toledo-Moreo, R. ; Wang, Y.</creator><creatorcontrib>Pires, S. ; Vandenbussche, V. ; Kansal, V. ; Bender, R. ; Blot, L. ; Bonino, D. ; Boucaud, A. ; Brinchmann, J. ; Capobianco, V. ; Carretero, J. ; Castellano, M. ; Cavuoti, S. ; Clédassou, R. ; Congedo, G. ; Conversi, L. ; Corcione, L. ; Dubath, F. ; Fosalba, P. ; Frailis, M. ; Franceschi, E. ; Fumana, M. ; Grupp, F. ; Hormuth, F. ; Kermiche, S. ; Knabenhans, M. ; Kohley, R. ; Kubik, B. ; Kunz, M. ; Ligori, S. ; Lilje, P. B. ; Lloro, I. ; Maiorano, E. ; Marggraf, O. ; Massey, R. ; Meylan, G. ; Padilla, C. ; Paltani, S. ; Pasian, F. ; Poncet, M. ; Potter, D. ; Raison, F. ; Rhodes, J. ; Roncarelli, M. ; Saglia, R. ; Schneider, P. ; Secroun, A. ; Serrano, S. ; Stadel, J. ; Tallada Crespí, P. ; Tereno, I. ; Toledo-Moreo, R. ; Wang, Y.</creatorcontrib><description>Weak lensing, which is the deflection of light by matter along the line of sight, has proven to be an efficient method for constraining models of structure formation and reveal the nature of dark energy. So far, most weak-lensing studies have focused on the shear field that can be measured directly from the ellipticity of background galaxies. However, within the context of forthcoming full-sky weak-lensing surveys such as Euclid , convergence maps (mass maps) offer an important advantage over shear fields in terms of cosmological exploitation. While it carry the same information, the lensing signal is more compressed in the convergence maps than in the shear field. This simplifies otherwise computationally expensive analyses, for instance, non-Gaussianity studies. However, the inversion of the non-local shear field requires accurate control of systematic effects caused by holes in the data field, field borders, shape noise, and the fact that the shear is not a direct observable (reduced shear). We present the two mass-inversion methods that are included in the official Euclid data-processing pipeline: the standard Kaiser &amp; Squires method (KS), and a new mass-inversion method (KS+) that aims to reduce the information loss during the mass inversion. This new method is based on the KS method and includes corrections for mass-mapping systematic effects. The results of the KS+ method are compared to the original implementation of the KS method in its simplest form, using the Euclid Flagship mock galaxy catalogue. In particular, we estimate the quality of the reconstruction by comparing the two-point correlation functions and third- and fourth-order moments obtained from shear and convergence maps, and we analyse each systematic effect independently and simultaneously. We show that the KS+ method substantially reduces the errors on the two-point correlation function and moments compared to the KS method. In particular, we show that the errors introduced by the mass inversion on the two-point correlation of the convergence maps are reduced by a factor of about 5, while the errors on the third- and fourth-order moments are reduced by factors of about 2 and 10, respectively.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201936865</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Astrophysics ; Convergence ; Correlation ; Dark energy ; Data processing ; Ellipticity ; Galaxies ; Physics ; Reconstruction ; Shear ; Sky surveys (astronomy)</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-06, Vol.638, p.A141</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-cbfafefc8d254b8c909c840e12246b3a18479305e69a8d4c298b9cef52bb5e013</citedby><cites>FETCH-LOGICAL-c380t-cbfafefc8d254b8c909c840e12246b3a18479305e69a8d4c298b9cef52bb5e013</cites><orcidid>0000-0003-2508-0046 ; 0000-0001-7179-0626 ; 0000-0002-1510-5214 ; 0000-0002-8108-9179 ; 0000-0002-4485-8549 ; 0000-0002-5094-2245 ; 0000-0001-7951-0166 ; 0000-0001-7387-2633 ; 0000-0001-9875-8263 ; 0000-0003-0378-7032 ; 0000-0003-4359-8797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,26544,27901,27902</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-02882577$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pires, S.</creatorcontrib><creatorcontrib>Vandenbussche, V.</creatorcontrib><creatorcontrib>Kansal, V.</creatorcontrib><creatorcontrib>Bender, R.</creatorcontrib><creatorcontrib>Blot, L.</creatorcontrib><creatorcontrib>Bonino, D.</creatorcontrib><creatorcontrib>Boucaud, A.</creatorcontrib><creatorcontrib>Brinchmann, J.</creatorcontrib><creatorcontrib>Capobianco, V.</creatorcontrib><creatorcontrib>Carretero, J.</creatorcontrib><creatorcontrib>Castellano, M.</creatorcontrib><creatorcontrib>Cavuoti, S.</creatorcontrib><creatorcontrib>Clédassou, R.</creatorcontrib><creatorcontrib>Congedo, G.</creatorcontrib><creatorcontrib>Conversi, L.</creatorcontrib><creatorcontrib>Corcione, L.</creatorcontrib><creatorcontrib>Dubath, F.</creatorcontrib><creatorcontrib>Fosalba, P.</creatorcontrib><creatorcontrib>Frailis, M.</creatorcontrib><creatorcontrib>Franceschi, E.</creatorcontrib><creatorcontrib>Fumana, M.</creatorcontrib><creatorcontrib>Grupp, F.</creatorcontrib><creatorcontrib>Hormuth, F.</creatorcontrib><creatorcontrib>Kermiche, S.</creatorcontrib><creatorcontrib>Knabenhans, M.</creatorcontrib><creatorcontrib>Kohley, R.</creatorcontrib><creatorcontrib>Kubik, B.</creatorcontrib><creatorcontrib>Kunz, M.</creatorcontrib><creatorcontrib>Ligori, S.</creatorcontrib><creatorcontrib>Lilje, P. B.</creatorcontrib><creatorcontrib>Lloro, I.</creatorcontrib><creatorcontrib>Maiorano, E.</creatorcontrib><creatorcontrib>Marggraf, O.</creatorcontrib><creatorcontrib>Massey, R.</creatorcontrib><creatorcontrib>Meylan, G.</creatorcontrib><creatorcontrib>Padilla, C.</creatorcontrib><creatorcontrib>Paltani, S.</creatorcontrib><creatorcontrib>Pasian, F.</creatorcontrib><creatorcontrib>Poncet, M.</creatorcontrib><creatorcontrib>Potter, D.</creatorcontrib><creatorcontrib>Raison, F.</creatorcontrib><creatorcontrib>Rhodes, J.</creatorcontrib><creatorcontrib>Roncarelli, M.</creatorcontrib><creatorcontrib>Saglia, R.</creatorcontrib><creatorcontrib>Schneider, P.</creatorcontrib><creatorcontrib>Secroun, A.</creatorcontrib><creatorcontrib>Serrano, S.</creatorcontrib><creatorcontrib>Stadel, J.</creatorcontrib><creatorcontrib>Tallada Crespí, P.</creatorcontrib><creatorcontrib>Tereno, I.</creatorcontrib><creatorcontrib>Toledo-Moreo, R.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><title>Euclid : Reconstruction of weak-lensing mass maps for non-Gaussianity studies</title><title>Astronomy and astrophysics (Berlin)</title><description>Weak lensing, which is the deflection of light by matter along the line of sight, has proven to be an efficient method for constraining models of structure formation and reveal the nature of dark energy. So far, most weak-lensing studies have focused on the shear field that can be measured directly from the ellipticity of background galaxies. However, within the context of forthcoming full-sky weak-lensing surveys such as Euclid , convergence maps (mass maps) offer an important advantage over shear fields in terms of cosmological exploitation. While it carry the same information, the lensing signal is more compressed in the convergence maps than in the shear field. This simplifies otherwise computationally expensive analyses, for instance, non-Gaussianity studies. However, the inversion of the non-local shear field requires accurate control of systematic effects caused by holes in the data field, field borders, shape noise, and the fact that the shear is not a direct observable (reduced shear). We present the two mass-inversion methods that are included in the official Euclid data-processing pipeline: the standard Kaiser &amp; Squires method (KS), and a new mass-inversion method (KS+) that aims to reduce the information loss during the mass inversion. This new method is based on the KS method and includes corrections for mass-mapping systematic effects. The results of the KS+ method are compared to the original implementation of the KS method in its simplest form, using the Euclid Flagship mock galaxy catalogue. In particular, we estimate the quality of the reconstruction by comparing the two-point correlation functions and third- and fourth-order moments obtained from shear and convergence maps, and we analyse each systematic effect independently and simultaneously. We show that the KS+ method substantially reduces the errors on the two-point correlation function and moments compared to the KS method. In particular, we show that the errors introduced by the mass inversion on the two-point correlation of the convergence maps are reduced by a factor of about 5, while the errors on the third- and fourth-order moments are reduced by factors of about 2 and 10, respectively.</description><subject>Astrophysics</subject><subject>Convergence</subject><subject>Correlation</subject><subject>Dark energy</subject><subject>Data processing</subject><subject>Ellipticity</subject><subject>Galaxies</subject><subject>Physics</subject><subject>Reconstruction</subject><subject>Shear</subject><subject>Sky surveys (astronomy)</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo9kU9LAzEQxYMoWKufwIMLnjyszf9NvBWprVARRM8hm000tU1qsqv027tLtZcZBn68mXkPgEsEbxFkaAIhpCUnHE0wRJJwwdkRGCFKcAkryo_B6ECcgrOcV_2IkSAj8DTrzNo3xV3xYk0MuU2daX0MRXTFj9Wf5dqG7MN7sdE592WbCxdTEWIo57rL2evg212R267xNp-DE6fX2V789TF4e5i93i_K5fP88X66LA0RsC1N7bSzzogGM1oLI6E0gkKLMKa8JhoJWkkCmeVSi4YaLEUtjXUM1zWzEJExuNnrfui12ia_0WmnovZqMV0qY7WCWAjMqup7YK_2rEk-tz6oEJNWCAqGVSUoIT1xvSe2KX51NrdqFbsU-gcUpqLqr-KS9hT514k5J-sOixFUQwpq8FgNHqtDCuQXCe53bA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Pires, S.</creator><creator>Vandenbussche, V.</creator><creator>Kansal, V.</creator><creator>Bender, R.</creator><creator>Blot, L.</creator><creator>Bonino, D.</creator><creator>Boucaud, A.</creator><creator>Brinchmann, J.</creator><creator>Capobianco, V.</creator><creator>Carretero, J.</creator><creator>Castellano, M.</creator><creator>Cavuoti, S.</creator><creator>Clédassou, R.</creator><creator>Congedo, G.</creator><creator>Conversi, L.</creator><creator>Corcione, L.</creator><creator>Dubath, F.</creator><creator>Fosalba, P.</creator><creator>Frailis, M.</creator><creator>Franceschi, E.</creator><creator>Fumana, M.</creator><creator>Grupp, F.</creator><creator>Hormuth, F.</creator><creator>Kermiche, S.</creator><creator>Knabenhans, M.</creator><creator>Kohley, R.</creator><creator>Kubik, B.</creator><creator>Kunz, M.</creator><creator>Ligori, S.</creator><creator>Lilje, P. B.</creator><creator>Lloro, I.</creator><creator>Maiorano, E.</creator><creator>Marggraf, O.</creator><creator>Massey, R.</creator><creator>Meylan, G.</creator><creator>Padilla, C.</creator><creator>Paltani, S.</creator><creator>Pasian, F.</creator><creator>Poncet, M.</creator><creator>Potter, D.</creator><creator>Raison, F.</creator><creator>Rhodes, J.</creator><creator>Roncarelli, M.</creator><creator>Saglia, R.</creator><creator>Schneider, P.</creator><creator>Secroun, A.</creator><creator>Serrano, S.</creator><creator>Stadel, J.</creator><creator>Tallada Crespí, P.</creator><creator>Tereno, I.</creator><creator>Toledo-Moreo, R.</creator><creator>Wang, Y.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>3HK</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2508-0046</orcidid><orcidid>https://orcid.org/0000-0001-7179-0626</orcidid><orcidid>https://orcid.org/0000-0002-1510-5214</orcidid><orcidid>https://orcid.org/0000-0002-8108-9179</orcidid><orcidid>https://orcid.org/0000-0002-4485-8549</orcidid><orcidid>https://orcid.org/0000-0002-5094-2245</orcidid><orcidid>https://orcid.org/0000-0001-7951-0166</orcidid><orcidid>https://orcid.org/0000-0001-7387-2633</orcidid><orcidid>https://orcid.org/0000-0001-9875-8263</orcidid><orcidid>https://orcid.org/0000-0003-0378-7032</orcidid><orcidid>https://orcid.org/0000-0003-4359-8797</orcidid></search><sort><creationdate>20200601</creationdate><title>Euclid : Reconstruction of weak-lensing mass maps for non-Gaussianity studies</title><author>Pires, S. ; Vandenbussche, V. ; Kansal, V. ; Bender, R. ; Blot, L. ; Bonino, D. ; Boucaud, A. ; Brinchmann, J. ; Capobianco, V. ; Carretero, J. ; Castellano, M. ; Cavuoti, S. ; Clédassou, R. ; Congedo, G. ; Conversi, L. ; Corcione, L. ; Dubath, F. ; Fosalba, P. ; Frailis, M. ; Franceschi, E. ; Fumana, M. ; Grupp, F. ; Hormuth, F. ; Kermiche, S. ; Knabenhans, M. ; Kohley, R. ; Kubik, B. ; Kunz, M. ; Ligori, S. ; Lilje, P. B. ; Lloro, I. ; Maiorano, E. ; Marggraf, O. ; Massey, R. ; Meylan, G. ; Padilla, C. ; Paltani, S. ; Pasian, F. ; Poncet, M. ; Potter, D. ; Raison, F. ; Rhodes, J. ; Roncarelli, M. ; Saglia, R. ; Schneider, P. ; Secroun, A. ; Serrano, S. ; Stadel, J. ; Tallada Crespí, P. ; Tereno, I. ; Toledo-Moreo, R. ; Wang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-cbfafefc8d254b8c909c840e12246b3a18479305e69a8d4c298b9cef52bb5e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Convergence</topic><topic>Correlation</topic><topic>Dark energy</topic><topic>Data processing</topic><topic>Ellipticity</topic><topic>Galaxies</topic><topic>Physics</topic><topic>Reconstruction</topic><topic>Shear</topic><topic>Sky surveys (astronomy)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pires, S.</creatorcontrib><creatorcontrib>Vandenbussche, V.</creatorcontrib><creatorcontrib>Kansal, V.</creatorcontrib><creatorcontrib>Bender, R.</creatorcontrib><creatorcontrib>Blot, L.</creatorcontrib><creatorcontrib>Bonino, D.</creatorcontrib><creatorcontrib>Boucaud, A.</creatorcontrib><creatorcontrib>Brinchmann, J.</creatorcontrib><creatorcontrib>Capobianco, V.</creatorcontrib><creatorcontrib>Carretero, J.</creatorcontrib><creatorcontrib>Castellano, M.</creatorcontrib><creatorcontrib>Cavuoti, S.</creatorcontrib><creatorcontrib>Clédassou, R.</creatorcontrib><creatorcontrib>Congedo, G.</creatorcontrib><creatorcontrib>Conversi, L.</creatorcontrib><creatorcontrib>Corcione, L.</creatorcontrib><creatorcontrib>Dubath, F.</creatorcontrib><creatorcontrib>Fosalba, P.</creatorcontrib><creatorcontrib>Frailis, M.</creatorcontrib><creatorcontrib>Franceschi, E.</creatorcontrib><creatorcontrib>Fumana, M.</creatorcontrib><creatorcontrib>Grupp, F.</creatorcontrib><creatorcontrib>Hormuth, F.</creatorcontrib><creatorcontrib>Kermiche, S.</creatorcontrib><creatorcontrib>Knabenhans, M.</creatorcontrib><creatorcontrib>Kohley, R.</creatorcontrib><creatorcontrib>Kubik, B.</creatorcontrib><creatorcontrib>Kunz, M.</creatorcontrib><creatorcontrib>Ligori, S.</creatorcontrib><creatorcontrib>Lilje, P. B.</creatorcontrib><creatorcontrib>Lloro, I.</creatorcontrib><creatorcontrib>Maiorano, E.</creatorcontrib><creatorcontrib>Marggraf, O.</creatorcontrib><creatorcontrib>Massey, R.</creatorcontrib><creatorcontrib>Meylan, G.</creatorcontrib><creatorcontrib>Padilla, C.</creatorcontrib><creatorcontrib>Paltani, S.</creatorcontrib><creatorcontrib>Pasian, F.</creatorcontrib><creatorcontrib>Poncet, M.</creatorcontrib><creatorcontrib>Potter, D.</creatorcontrib><creatorcontrib>Raison, F.</creatorcontrib><creatorcontrib>Rhodes, J.</creatorcontrib><creatorcontrib>Roncarelli, M.</creatorcontrib><creatorcontrib>Saglia, R.</creatorcontrib><creatorcontrib>Schneider, P.</creatorcontrib><creatorcontrib>Secroun, A.</creatorcontrib><creatorcontrib>Serrano, S.</creatorcontrib><creatorcontrib>Stadel, J.</creatorcontrib><creatorcontrib>Tallada Crespí, P.</creatorcontrib><creatorcontrib>Tereno, I.</creatorcontrib><creatorcontrib>Toledo-Moreo, R.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pires, S.</au><au>Vandenbussche, V.</au><au>Kansal, V.</au><au>Bender, R.</au><au>Blot, L.</au><au>Bonino, D.</au><au>Boucaud, A.</au><au>Brinchmann, J.</au><au>Capobianco, V.</au><au>Carretero, J.</au><au>Castellano, M.</au><au>Cavuoti, S.</au><au>Clédassou, R.</au><au>Congedo, G.</au><au>Conversi, L.</au><au>Corcione, L.</au><au>Dubath, F.</au><au>Fosalba, P.</au><au>Frailis, M.</au><au>Franceschi, E.</au><au>Fumana, M.</au><au>Grupp, F.</au><au>Hormuth, F.</au><au>Kermiche, S.</au><au>Knabenhans, M.</au><au>Kohley, R.</au><au>Kubik, B.</au><au>Kunz, M.</au><au>Ligori, S.</au><au>Lilje, P. B.</au><au>Lloro, I.</au><au>Maiorano, E.</au><au>Marggraf, O.</au><au>Massey, R.</au><au>Meylan, G.</au><au>Padilla, C.</au><au>Paltani, S.</au><au>Pasian, F.</au><au>Poncet, M.</au><au>Potter, D.</au><au>Raison, F.</au><au>Rhodes, J.</au><au>Roncarelli, M.</au><au>Saglia, R.</au><au>Schneider, P.</au><au>Secroun, A.</au><au>Serrano, S.</au><au>Stadel, J.</au><au>Tallada Crespí, P.</au><au>Tereno, I.</au><au>Toledo-Moreo, R.</au><au>Wang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Euclid : Reconstruction of weak-lensing mass maps for non-Gaussianity studies</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>638</volume><spage>A141</spage><pages>A141-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Weak lensing, which is the deflection of light by matter along the line of sight, has proven to be an efficient method for constraining models of structure formation and reveal the nature of dark energy. So far, most weak-lensing studies have focused on the shear field that can be measured directly from the ellipticity of background galaxies. However, within the context of forthcoming full-sky weak-lensing surveys such as Euclid , convergence maps (mass maps) offer an important advantage over shear fields in terms of cosmological exploitation. While it carry the same information, the lensing signal is more compressed in the convergence maps than in the shear field. This simplifies otherwise computationally expensive analyses, for instance, non-Gaussianity studies. However, the inversion of the non-local shear field requires accurate control of systematic effects caused by holes in the data field, field borders, shape noise, and the fact that the shear is not a direct observable (reduced shear). We present the two mass-inversion methods that are included in the official Euclid data-processing pipeline: the standard Kaiser &amp; Squires method (KS), and a new mass-inversion method (KS+) that aims to reduce the information loss during the mass inversion. This new method is based on the KS method and includes corrections for mass-mapping systematic effects. The results of the KS+ method are compared to the original implementation of the KS method in its simplest form, using the Euclid Flagship mock galaxy catalogue. In particular, we estimate the quality of the reconstruction by comparing the two-point correlation functions and third- and fourth-order moments obtained from shear and convergence maps, and we analyse each systematic effect independently and simultaneously. We show that the KS+ method substantially reduces the errors on the two-point correlation function and moments compared to the KS method. In particular, we show that the errors introduced by the mass inversion on the two-point correlation of the convergence maps are reduced by a factor of about 5, while the errors on the third- and fourth-order moments are reduced by factors of about 2 and 10, respectively.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201936865</doi><orcidid>https://orcid.org/0000-0003-2508-0046</orcidid><orcidid>https://orcid.org/0000-0001-7179-0626</orcidid><orcidid>https://orcid.org/0000-0002-1510-5214</orcidid><orcidid>https://orcid.org/0000-0002-8108-9179</orcidid><orcidid>https://orcid.org/0000-0002-4485-8549</orcidid><orcidid>https://orcid.org/0000-0002-5094-2245</orcidid><orcidid>https://orcid.org/0000-0001-7951-0166</orcidid><orcidid>https://orcid.org/0000-0001-7387-2633</orcidid><orcidid>https://orcid.org/0000-0001-9875-8263</orcidid><orcidid>https://orcid.org/0000-0003-0378-7032</orcidid><orcidid>https://orcid.org/0000-0003-4359-8797</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2020-06, Vol.638, p.A141
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_cea_02882577v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; NORA - Norwegian Open Research Archives; EZB-FREE-00999 freely available EZB journals
subjects Astrophysics
Convergence
Correlation
Dark energy
Data processing
Ellipticity
Galaxies
Physics
Reconstruction
Shear
Sky surveys (astronomy)
title Euclid : Reconstruction of weak-lensing mass maps for non-Gaussianity studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Euclid%20:%20Reconstruction%20of%20weak-lensing%20mass%20maps%20for%20non-Gaussianity%20studies&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Pires,%20S.&rft.date=2020-06-01&rft.volume=638&rft.spage=A141&rft.pages=A141-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201936865&rft_dat=%3Cproquest_hal_p%3E2487122694%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487122694&rft_id=info:pmid/&rfr_iscdi=true