High-resolution, 3D radiative transfer modelling: III. The DustPedia barred galaxies

Context . Dust in late-type galaxies in the local Universe is responsible for absorbing approximately one third of the energy emitted by stars. It is often assumed that dust heating is mainly attributable to the absorption of ultraviolet and optical photons emitted by the youngest (≤100 Myr) stars....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-05, Vol.637, p.A25
Hauptverfasser: Nersesian, Angelos, Verstocken, Sam, Viaene, Sébastien, Baes, Maarten, Xilouris, Emmanuel M., Bianchi, Simone, Casasola, Viviana, Clark, Christopher J. R., Davies, Jonathan I., De Looze, Ilse, De Vis, Pieter, Dobbels, Wouter, Fritz, Jacopo, Galametz, Maud, Galliano, Frédéric, Jones, Anthony P., Madden, Suzanne C., Mosenkov, Aleksandr V., Trčka, Ana, Ysard, Nathalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A25
container_title Astronomy and astrophysics (Berlin)
container_volume 637
creator Nersesian, Angelos
Verstocken, Sam
Viaene, Sébastien
Baes, Maarten
Xilouris, Emmanuel M.
Bianchi, Simone
Casasola, Viviana
Clark, Christopher J. R.
Davies, Jonathan I.
De Looze, Ilse
De Vis, Pieter
Dobbels, Wouter
Fritz, Jacopo
Galametz, Maud
Galliano, Frédéric
Jones, Anthony P.
Madden, Suzanne C.
Mosenkov, Aleksandr V.
Trčka, Ana
Ysard, Nathalie
description Context . Dust in late-type galaxies in the local Universe is responsible for absorbing approximately one third of the energy emitted by stars. It is often assumed that dust heating is mainly attributable to the absorption of ultraviolet and optical photons emitted by the youngest (≤100 Myr) stars. Consequently, thermal re-emission by dust at far-infrared wavelengths is often linked to the star-formation activity of a galaxy. However, several studies argue that the contribution to dust heating by much older stellar populations might be more significant than previously thought. Advances in radiation transfer simulations finally allow us to actually quantify the heating mechanisms of diffuse dust by the stellar radiation field. Aims . As one of the main goals in the DustPedia project, we have developed a framework to construct detailed 3D stellar and dust radiative transfer models for nearby galaxies. In this study, we analyse the contribution of the different stellar populations to the dust heating in four nearby face-on barred galaxies: NGC 1365, M 83, M 95, and M 100. We aim to quantify the fraction directly related to young stellar populations, both globally and on local scales, and to assess the influence of the bar on the heating fraction. Methods . From 2D images we derive the 3D distributions of stars and dust. To model the complex geometries, we used SKIRT , a state-of-the-art 3D Monte Carlo radiative transfer code designed to self-consistently simulate the absorption, scattering, and thermal re-emission by the dust for arbitrary 3D distributions. Results . We derive global attenuation laws for each galaxy and confirm that galaxies of high specific star-formation rate have shallower attenuation curves and weaker UV bumps. On average, 36.5% of the bolometric luminosity is absorbed by dust in our galaxy sample. We report a clear effect of the bar structure on the radial profiles of the dust-heating fraction by the young stellar populations, and the dust temperature. We find that the young stellar populations are the main contributors to the dust heating, donating, on average ∼59% of their luminosity to this purpose throughout the galaxy. This dust-heating fraction drops to ∼53% in the bar region and ∼38% in the bulge region where the old stars are the dominant contributors to the dust heating. We also find a strong link between the heating fraction by the young stellar populations and the specific star-formation rate.
doi_str_mv 10.1051/0004-6361/201936176
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_02567626v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_cea_02567626v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-85b1e287857ecd1887e008656a5f5a5507a627b9c678c63d5958a1e9fac882363</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKu_wMteBWNfkuYleyzVusKCFz2H12y2jWy7kqwF_71dKj0NA98MzDB2L-BJgBYzAJhzVChmEkR5VIMXbCLmSnIwc7xkkzNxzW5y_jpaKayaMKjiZstTyH33M8R-_1io5yJRE2mIh1AMifa5DanY9U3ourjf3LKrlroc7v51yj5XLx_Litfvr2_LRc29VGrgVq9FkNZYbYJvhLUmAFjUSLrVpDUYQmnWpUdjPapGl9qSCGVL3lqpUE3Zw6l3S537TnFH6df1FF21qJ0P5EBqNCjxII6sOrE-9Tmn0J4DAtx4kBvnu3G-Ox-k_gDLaFWy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-resolution, 3D radiative transfer modelling: III. The DustPedia barred galaxies</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nersesian, Angelos ; Verstocken, Sam ; Viaene, Sébastien ; Baes, Maarten ; Xilouris, Emmanuel M. ; Bianchi, Simone ; Casasola, Viviana ; Clark, Christopher J. R. ; Davies, Jonathan I. ; De Looze, Ilse ; De Vis, Pieter ; Dobbels, Wouter ; Fritz, Jacopo ; Galametz, Maud ; Galliano, Frédéric ; Jones, Anthony P. ; Madden, Suzanne C. ; Mosenkov, Aleksandr V. ; Trčka, Ana ; Ysard, Nathalie</creator><creatorcontrib>Nersesian, Angelos ; Verstocken, Sam ; Viaene, Sébastien ; Baes, Maarten ; Xilouris, Emmanuel M. ; Bianchi, Simone ; Casasola, Viviana ; Clark, Christopher J. R. ; Davies, Jonathan I. ; De Looze, Ilse ; De Vis, Pieter ; Dobbels, Wouter ; Fritz, Jacopo ; Galametz, Maud ; Galliano, Frédéric ; Jones, Anthony P. ; Madden, Suzanne C. ; Mosenkov, Aleksandr V. ; Trčka, Ana ; Ysard, Nathalie</creatorcontrib><description>Context . Dust in late-type galaxies in the local Universe is responsible for absorbing approximately one third of the energy emitted by stars. It is often assumed that dust heating is mainly attributable to the absorption of ultraviolet and optical photons emitted by the youngest (≤100 Myr) stars. Consequently, thermal re-emission by dust at far-infrared wavelengths is often linked to the star-formation activity of a galaxy. However, several studies argue that the contribution to dust heating by much older stellar populations might be more significant than previously thought. Advances in radiation transfer simulations finally allow us to actually quantify the heating mechanisms of diffuse dust by the stellar radiation field. Aims . As one of the main goals in the DustPedia project, we have developed a framework to construct detailed 3D stellar and dust radiative transfer models for nearby galaxies. In this study, we analyse the contribution of the different stellar populations to the dust heating in four nearby face-on barred galaxies: NGC 1365, M 83, M 95, and M 100. We aim to quantify the fraction directly related to young stellar populations, both globally and on local scales, and to assess the influence of the bar on the heating fraction. Methods . From 2D images we derive the 3D distributions of stars and dust. To model the complex geometries, we used SKIRT , a state-of-the-art 3D Monte Carlo radiative transfer code designed to self-consistently simulate the absorption, scattering, and thermal re-emission by the dust for arbitrary 3D distributions. Results . We derive global attenuation laws for each galaxy and confirm that galaxies of high specific star-formation rate have shallower attenuation curves and weaker UV bumps. On average, 36.5% of the bolometric luminosity is absorbed by dust in our galaxy sample. We report a clear effect of the bar structure on the radial profiles of the dust-heating fraction by the young stellar populations, and the dust temperature. We find that the young stellar populations are the main contributors to the dust heating, donating, on average ∼59% of their luminosity to this purpose throughout the galaxy. This dust-heating fraction drops to ∼53% in the bar region and ∼38% in the bulge region where the old stars are the dominant contributors to the dust heating. We also find a strong link between the heating fraction by the young stellar populations and the specific star-formation rate.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201936176</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astrophysics ; Physics</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-05, Vol.637, p.A25</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-85b1e287857ecd1887e008656a5f5a5507a627b9c678c63d5958a1e9fac882363</cites><orcidid>0000-0001-6843-409X ; 0000-0002-0283-8689 ; 0000-0002-4414-3367 ; 0000-0003-0577-6425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3726,27923,27924</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-02567626$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nersesian, Angelos</creatorcontrib><creatorcontrib>Verstocken, Sam</creatorcontrib><creatorcontrib>Viaene, Sébastien</creatorcontrib><creatorcontrib>Baes, Maarten</creatorcontrib><creatorcontrib>Xilouris, Emmanuel M.</creatorcontrib><creatorcontrib>Bianchi, Simone</creatorcontrib><creatorcontrib>Casasola, Viviana</creatorcontrib><creatorcontrib>Clark, Christopher J. R.</creatorcontrib><creatorcontrib>Davies, Jonathan I.</creatorcontrib><creatorcontrib>De Looze, Ilse</creatorcontrib><creatorcontrib>De Vis, Pieter</creatorcontrib><creatorcontrib>Dobbels, Wouter</creatorcontrib><creatorcontrib>Fritz, Jacopo</creatorcontrib><creatorcontrib>Galametz, Maud</creatorcontrib><creatorcontrib>Galliano, Frédéric</creatorcontrib><creatorcontrib>Jones, Anthony P.</creatorcontrib><creatorcontrib>Madden, Suzanne C.</creatorcontrib><creatorcontrib>Mosenkov, Aleksandr V.</creatorcontrib><creatorcontrib>Trčka, Ana</creatorcontrib><creatorcontrib>Ysard, Nathalie</creatorcontrib><title>High-resolution, 3D radiative transfer modelling: III. The DustPedia barred galaxies</title><title>Astronomy and astrophysics (Berlin)</title><description>Context . Dust in late-type galaxies in the local Universe is responsible for absorbing approximately one third of the energy emitted by stars. It is often assumed that dust heating is mainly attributable to the absorption of ultraviolet and optical photons emitted by the youngest (≤100 Myr) stars. Consequently, thermal re-emission by dust at far-infrared wavelengths is often linked to the star-formation activity of a galaxy. However, several studies argue that the contribution to dust heating by much older stellar populations might be more significant than previously thought. Advances in radiation transfer simulations finally allow us to actually quantify the heating mechanisms of diffuse dust by the stellar radiation field. Aims . As one of the main goals in the DustPedia project, we have developed a framework to construct detailed 3D stellar and dust radiative transfer models for nearby galaxies. In this study, we analyse the contribution of the different stellar populations to the dust heating in four nearby face-on barred galaxies: NGC 1365, M 83, M 95, and M 100. We aim to quantify the fraction directly related to young stellar populations, both globally and on local scales, and to assess the influence of the bar on the heating fraction. Methods . From 2D images we derive the 3D distributions of stars and dust. To model the complex geometries, we used SKIRT , a state-of-the-art 3D Monte Carlo radiative transfer code designed to self-consistently simulate the absorption, scattering, and thermal re-emission by the dust for arbitrary 3D distributions. Results . We derive global attenuation laws for each galaxy and confirm that galaxies of high specific star-formation rate have shallower attenuation curves and weaker UV bumps. On average, 36.5% of the bolometric luminosity is absorbed by dust in our galaxy sample. We report a clear effect of the bar structure on the radial profiles of the dust-heating fraction by the young stellar populations, and the dust temperature. We find that the young stellar populations are the main contributors to the dust heating, donating, on average ∼59% of their luminosity to this purpose throughout the galaxy. This dust-heating fraction drops to ∼53% in the bar region and ∼38% in the bulge region where the old stars are the dominant contributors to the dust heating. We also find a strong link between the heating fraction by the young stellar populations and the specific star-formation rate.</description><subject>Astrophysics</subject><subject>Physics</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKu_wMteBWNfkuYleyzVusKCFz2H12y2jWy7kqwF_71dKj0NA98MzDB2L-BJgBYzAJhzVChmEkR5VIMXbCLmSnIwc7xkkzNxzW5y_jpaKayaMKjiZstTyH33M8R-_1io5yJRE2mIh1AMifa5DanY9U3ourjf3LKrlroc7v51yj5XLx_Litfvr2_LRc29VGrgVq9FkNZYbYJvhLUmAFjUSLrVpDUYQmnWpUdjPapGl9qSCGVL3lqpUE3Zw6l3S537TnFH6df1FF21qJ0P5EBqNCjxII6sOrE-9Tmn0J4DAtx4kBvnu3G-Ox-k_gDLaFWy</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Nersesian, Angelos</creator><creator>Verstocken, Sam</creator><creator>Viaene, Sébastien</creator><creator>Baes, Maarten</creator><creator>Xilouris, Emmanuel M.</creator><creator>Bianchi, Simone</creator><creator>Casasola, Viviana</creator><creator>Clark, Christopher J. R.</creator><creator>Davies, Jonathan I.</creator><creator>De Looze, Ilse</creator><creator>De Vis, Pieter</creator><creator>Dobbels, Wouter</creator><creator>Fritz, Jacopo</creator><creator>Galametz, Maud</creator><creator>Galliano, Frédéric</creator><creator>Jones, Anthony P.</creator><creator>Madden, Suzanne C.</creator><creator>Mosenkov, Aleksandr V.</creator><creator>Trčka, Ana</creator><creator>Ysard, Nathalie</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6843-409X</orcidid><orcidid>https://orcid.org/0000-0002-0283-8689</orcidid><orcidid>https://orcid.org/0000-0002-4414-3367</orcidid><orcidid>https://orcid.org/0000-0003-0577-6425</orcidid></search><sort><creationdate>20200501</creationdate><title>High-resolution, 3D radiative transfer modelling</title><author>Nersesian, Angelos ; Verstocken, Sam ; Viaene, Sébastien ; Baes, Maarten ; Xilouris, Emmanuel M. ; Bianchi, Simone ; Casasola, Viviana ; Clark, Christopher J. R. ; Davies, Jonathan I. ; De Looze, Ilse ; De Vis, Pieter ; Dobbels, Wouter ; Fritz, Jacopo ; Galametz, Maud ; Galliano, Frédéric ; Jones, Anthony P. ; Madden, Suzanne C. ; Mosenkov, Aleksandr V. ; Trčka, Ana ; Ysard, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-85b1e287857ecd1887e008656a5f5a5507a627b9c678c63d5958a1e9fac882363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nersesian, Angelos</creatorcontrib><creatorcontrib>Verstocken, Sam</creatorcontrib><creatorcontrib>Viaene, Sébastien</creatorcontrib><creatorcontrib>Baes, Maarten</creatorcontrib><creatorcontrib>Xilouris, Emmanuel M.</creatorcontrib><creatorcontrib>Bianchi, Simone</creatorcontrib><creatorcontrib>Casasola, Viviana</creatorcontrib><creatorcontrib>Clark, Christopher J. R.</creatorcontrib><creatorcontrib>Davies, Jonathan I.</creatorcontrib><creatorcontrib>De Looze, Ilse</creatorcontrib><creatorcontrib>De Vis, Pieter</creatorcontrib><creatorcontrib>Dobbels, Wouter</creatorcontrib><creatorcontrib>Fritz, Jacopo</creatorcontrib><creatorcontrib>Galametz, Maud</creatorcontrib><creatorcontrib>Galliano, Frédéric</creatorcontrib><creatorcontrib>Jones, Anthony P.</creatorcontrib><creatorcontrib>Madden, Suzanne C.</creatorcontrib><creatorcontrib>Mosenkov, Aleksandr V.</creatorcontrib><creatorcontrib>Trčka, Ana</creatorcontrib><creatorcontrib>Ysard, Nathalie</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nersesian, Angelos</au><au>Verstocken, Sam</au><au>Viaene, Sébastien</au><au>Baes, Maarten</au><au>Xilouris, Emmanuel M.</au><au>Bianchi, Simone</au><au>Casasola, Viviana</au><au>Clark, Christopher J. R.</au><au>Davies, Jonathan I.</au><au>De Looze, Ilse</au><au>De Vis, Pieter</au><au>Dobbels, Wouter</au><au>Fritz, Jacopo</au><au>Galametz, Maud</au><au>Galliano, Frédéric</au><au>Jones, Anthony P.</au><au>Madden, Suzanne C.</au><au>Mosenkov, Aleksandr V.</au><au>Trčka, Ana</au><au>Ysard, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution, 3D radiative transfer modelling: III. The DustPedia barred galaxies</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>637</volume><spage>A25</spage><pages>A25-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context . Dust in late-type galaxies in the local Universe is responsible for absorbing approximately one third of the energy emitted by stars. It is often assumed that dust heating is mainly attributable to the absorption of ultraviolet and optical photons emitted by the youngest (≤100 Myr) stars. Consequently, thermal re-emission by dust at far-infrared wavelengths is often linked to the star-formation activity of a galaxy. However, several studies argue that the contribution to dust heating by much older stellar populations might be more significant than previously thought. Advances in radiation transfer simulations finally allow us to actually quantify the heating mechanisms of diffuse dust by the stellar radiation field. Aims . As one of the main goals in the DustPedia project, we have developed a framework to construct detailed 3D stellar and dust radiative transfer models for nearby galaxies. In this study, we analyse the contribution of the different stellar populations to the dust heating in four nearby face-on barred galaxies: NGC 1365, M 83, M 95, and M 100. We aim to quantify the fraction directly related to young stellar populations, both globally and on local scales, and to assess the influence of the bar on the heating fraction. Methods . From 2D images we derive the 3D distributions of stars and dust. To model the complex geometries, we used SKIRT , a state-of-the-art 3D Monte Carlo radiative transfer code designed to self-consistently simulate the absorption, scattering, and thermal re-emission by the dust for arbitrary 3D distributions. Results . We derive global attenuation laws for each galaxy and confirm that galaxies of high specific star-formation rate have shallower attenuation curves and weaker UV bumps. On average, 36.5% of the bolometric luminosity is absorbed by dust in our galaxy sample. We report a clear effect of the bar structure on the radial profiles of the dust-heating fraction by the young stellar populations, and the dust temperature. We find that the young stellar populations are the main contributors to the dust heating, donating, on average ∼59% of their luminosity to this purpose throughout the galaxy. This dust-heating fraction drops to ∼53% in the bar region and ∼38% in the bulge region where the old stars are the dominant contributors to the dust heating. We also find a strong link between the heating fraction by the young stellar populations and the specific star-formation rate.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201936176</doi><orcidid>https://orcid.org/0000-0001-6843-409X</orcidid><orcidid>https://orcid.org/0000-0002-0283-8689</orcidid><orcidid>https://orcid.org/0000-0002-4414-3367</orcidid><orcidid>https://orcid.org/0000-0003-0577-6425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2020-05, Vol.637, p.A25
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_cea_02567626v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Astrophysics
Physics
title High-resolution, 3D radiative transfer modelling: III. The DustPedia barred galaxies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution,%203D%20radiative%20transfer%20modelling:%20III.%20The%20DustPedia%20barred%20galaxies&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Nersesian,%20Angelos&rft.date=2020-05-01&rft.volume=637&rft.spage=A25&rft.pages=A25-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201936176&rft_dat=%3Chal_cross%3Eoai_HAL_cea_02567626v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true